Advertisement

Annals of Biomedical Engineering

, Volume 32, Issue 3, pp 477–486 | Cite as

Polymeric Scaffolds for Bone Tissue Engineering

  • Xiaohua Liu
  • Peter X. Ma
Article

Abstract

Bone tissue engineering is a rapidly developing area. Engineering bone typically uses an artificial extracellular matrix (scaffold), osteoblasts or cells that can become osteoblasts, and regulating factors that promote cell attachment, differentiation, and mineralized bone formation. Among them, highly porous scaffolds play a critical role in cell seeding, proliferation, and new 3D-tissue formation. A variety of biodegradable polymer materials and scaffolding fabrication techniques for bone tissue engineering have been investigated over the past decade. This article reviews the polymer materials, scaffold design, and fabrication methods for bone tissue engineering. Advantages and limitations of these materials and methods are analyzed. Various architectural parameters of scaffolds important for bone tissue engineering (e.g. porosity, pore size, interconnectivity, and pore-wall microstructures) are discussed. Surface modification of scaffolds is also discussed based on the significant effect of surface chemistry on cells adhesion and function.

Bone Tissue engineering Biodegradable Polymer materials Scaffolds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Akao, M., M. Sakatsume, H. Aoki, T. Takagi, and S. Sasaki. In-vitro mineralization in bovine tooth germ-cell cultured with sintered hydroxyapatite. J. Mater. Sci.-Mater. Med. 4:569-574, 1993.Google Scholar
  2. 2.
    Alsberg, E., K. W. Anderson, A. Albeiruti, J. A. Rowley, and D. J. Mooney. Engineering growing tissues. Proc. Nat. Acad. Sci. U.S.A. 99:12025-12030, 2002.Google Scholar
  3. 3.
    Athanasiou, K. A., C. M. Agrawal, F. A. Barber, and S. S. Burkhart. Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy 14:726-737, 1998.Google Scholar
  4. 4.
    Athanasiou, K. A., G. G. Niederauer, and C. M. Agrawal. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17:93-102, 1996.Google Scholar
  5. 5.
    Attawia, M. A., K. M. Herbert, and C. T. Laurencin. Osteoblast-like cell adherance and migration through 3-dimensional porous polymer matrices. Biochem. Biophys. Res. Commun. 213:639-644, 1995.Google Scholar
  6. 6.
    Badylak, S. F. Modification of Natural Polymers: Collagen. In: Methods of Tissue Engineering, edited by A. Atala, and R. P. Lanza. San Diego, CA: Academic Press, 2002, pp. 47-92.Google Scholar
  7. 7.
    Barrera, D. A., E. Zylstra, P. T. Lansbury, and R. Langer. Copolymerization and degradation of poly(lactic acid co-lysine). Macromolecules 28:425-432, 1995.Google Scholar
  8. 8.
    Behravesh, E., K. Zygourakis, and A. G. Mikos. Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide. J. Biomed. Mater. Res. Part A 65A:260-270, 2003.Google Scholar
  9. 9.
    Boland, E. D., G. E. Wnek, D. G. Simpson, K. J. Pawlowski, and G. L. Bowlin. Tailoring tissue engineering scaffolds using electrostatic processing techniques: A study of poly(glycolic acid) electrospinning. J. Macromol. Sci.-Pure Appl. Chem. 38:1231-1243, 2001.Google Scholar
  10. 10.
    Bonadio, J., E. Smiley, P. Patil, and S. Goldstein. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat. Med. 5:753-759, 1999.Google Scholar
  11. 11.
    Boyan, B. D., T. W. Hummert, D. D. Dean, and Z. Schwartz. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17:137-146, 1996.Google Scholar
  12. 12.
    Burdick, J. A., and K. S. Anseth. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23:4315-4323, 2002.Google Scholar
  13. 13.
    Burg, K. J. L., S. Porter, and J. F. Kellam. Biomaterial developments for bone tissue engineering. Biomaterials 21:2347-2359, 2000.Google Scholar
  14. 14.
    Cai, K. Y., W. G. Liu, F. Li, K. D. Yao, Z. M. Yang, X. Q. Li, and H. Q. Xie. Modulation of osteoblast function using poly(D, L-lactic acid) surfaces modified with alkylation derivative of chitosan. J. Biomater. Sci.-Polym. Ed. 13:53-66, 2002.Google Scholar
  15. 15.
    Chapekar, M. S. Tissue engineering: Challenges and opportunities. J. Biomed. Mater. Res. 53:617-620, 2000.Google Scholar
  16. 16.
    Choueka, J., J. L. Charvet, K. J. Koval, H. Alexander, K. S. James, K. A. Hooper, and J. Kohn. Canine bone response to tyrosine-derived polycarbonates and poly(L-lactic acid). J. Biomed. Mater. Res. 31:35-41, 1996.Google Scholar
  17. 17.
    Cook, A. D., J. S. Hrkach, N. N. Gao, I. M. Johnson, U. B. Pajvani, S. M. Cannizzaro, and R. Langer. Characterization and development of RGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. J. Biomed. Mater. Res. 35:513-523, 1997.Google Scholar
  18. 18.
    Cooper, A. I. Polymer synthesis and processing using supercritical carbon dioxide. J. Mater. Chem. 10:207-234, 2000.Google Scholar
  19. 19.
    Crane, G. M., S. L. Ishaug, and A. G. Mikos. Bone tissue engineering. Nat. Med. 1:1322-1324, 1995.Google Scholar
  20. 20.
    Deschamps, A. A., M. B. Claase, W. J. Sleijster, J. D. de Bruijn, D. W. Grijpma, and J. Feijen. Design of segmented poly(ether ester) materials and structures for the tissue engineering of bone. J. Control. Release 78:175-186, 2002.Google Scholar
  21. 21.
    Elisseeff, J., K. Anseth, D. Sims, W. McIntosh, M. Randolph, and R. Langer. Transdermal photopolymerization for minimally invasive implantation. Proc. Nat. Acad. Sci. U.S.A. 96:3104-3107, 1999.Google Scholar
  22. 22.
    Elsdale, T., and J. Bard. Collagen substrata for studies on cell behavior. J. Cell Biol. 54:626-637, 1972.Google Scholar
  23. 23.
    Ertel, S. I., and J. Kohn. Evaluation of a Series of Tyrosine-Derived Polycarbonates as Degradable Biomaterials. J. Biomed. Mater. Res. 28:919-930, 1994.Google Scholar
  24. 24.
    Fialkov, J. A., C. E. Holy, M. S. Shoichet, and J. E. Davies. In vivo bone engineering in a rabbit femur. J. Craniofac. Surg. 14:324-332, 2003.Google Scholar
  25. 25.
    Gao, J. M., L. Niklason, and R. Langer. Surface hydrolysis of poly(glycolic acid) meshes increases the seeding density of vascular smooth muscle cells. J. Biomed. Mater. Res. 42:417-424, 1998.Google Scholar
  26. 26.
    Giordano, R. A., B. M. Wu, S. W. Borland, L. G. Cima, E. M. Sachs, and M. J. Cima. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J. Biomater. Sci.-Polym. Ed. 8:63-75, 1996.Google Scholar
  27. 27.
    Girton, T. S., V. H. Barocas, and R. T. Tranquillo. Confined compression of a tissue-equivalent: collagen fibril and cell alignment in response to anisotropic strain. J. Biomech. Eng. 124:568-575, 2002.Google Scholar
  28. 28.
    Griffith, L. G. Emerging design principles in Biomaterials and scaffolds for tissue engineering. Ann. N.Y. Acad. Sci. 961:83-95, 2002.Google Scholar
  29. 29.
    Griffith, L. G., and G. Naughton. Tissue engineering—Current challenges and expanding opportunities. Science. 295:1009-1013, 2002.Google Scholar
  30. 30.
    Grinnell, F., and M. H. Bennett. Ultrastructural studies of cell–collagen interactions. Methods Enzymol. 82:535-544, 1982.Google Scholar
  31. 31.
    Han, D. K., and J. A. Hubbell. Lactide-based poly(ethylene glycol) polymer networks for scaffolds in tissue engineering. Macromolecules 29:5233-5235, 1996.Google Scholar
  32. 32.
    Hanes, J., M. Chiba, and R. Langer. Degradation of porous poly(anhydride-co-imide) microspheres and implications for controlled macromolecule delivery. Biomaterials 19:163-172, 1998.Google Scholar
  33. 33.
    Harris, L. D., B. S. Kim, and D. J. Mooney. Open pore biodegradable matrices formed with gas foaming. J. Biomed. Mater. Res. 42:396-402, 1998.Google Scholar
  34. 34.
    Hench, L. L., and J. M. Polak. Third-generation biomedical materials. Science 295:1014-1017, 2002.Google Scholar
  35. 35.
    Hollinger, J. Strategies for Regenerating Bone of the Craniofacial Complex. Bone 14:575-580, 1993.Google Scholar
  36. 36.
    Hollinger, J. O., and G. C. Battistone. Biodegradable bone repair materials—Synthetic-polymers and ceramics. Clin. Orthop. Rel. Res. 290-305, 1986.Google Scholar
  37. 37.
    Hu, Y. H., S. R. Winn, I. Krajbich, and J. O. Hollinger. Porous polymer scaffolds surface-modified with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro. J. Biomed. Mater. Res. Part A 64A:583-590, 2003.Google Scholar
  38. 38.
    Huang, L., K. Nagapudi, R. P. Apkarian, and E. L. Chaikof. Engineered collagen-PEO nanofibers and fabrics. J. Biomater. Sci.-Polym. Ed. 12:979-993, 2001.Google Scholar
  39. 39.
    Hutmacher, D. W. Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J. Biomater. Sci.-Polym. Ed. 12:107-124, 2001.Google Scholar
  40. 40.
    Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 21:2529-2543, 2000.Google Scholar
  41. 41.
    Ibim, S. M., K. E. Uhrich, R. Bronson, S. F. El-Amin, R. S. Langer, and C. T. Laurencin. Poly(anhydride-co-imides): in vivo biocompatibility in a rat model. Biomaterials 19:941-951, 1998.Google Scholar
  42. 42.
    Ishaug, S. L., G. M. Crane, M. J. Miller, A. W. Yasko, M. J. Yaszemski, and A. G. Mikos. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J. Biomed. Mater. Res. 36:17-28, 1997.Google Scholar
  43. 43.
    Kadler, K. E., D. F. Holmes, J. A. Trotter, and J. A. Chapman. Collagen fibril formation. Biochem. J. 316:1-11, 1996.Google Scholar
  44. 44.
    Karp, J. M., K. Rzeszutek, M. S. Shoichet, and J. E. Davies. Fabrication of precise cylindrical three-dimensional tissue engineering scaffolds for in vitro and in vivo bone engineering applications. J. Craniofac. Surg. 14:317-323, 2003.Google Scholar
  45. 45.
    Kenley, R., L. Marden, T. Turek, L. Jin, E. Ron, and J. O. Hollinger. Osseous regeneration in the rat calvarium using novel delivery systems for recombinant human bone morphogenetic protein-2 (rhBMP-2). J. Biomed Mater. Res. 28:1139-1147, 1994.Google Scholar
  46. 46.
    Kuberka, M., D. Von Heimburg, H. Schoof, I. Heschel, and G. Rau. Magnification of the pore size in biodegradable collagen sponges. Int. J. Artif. Organs. 25:67-73, 2002.Google Scholar
  47. 47.
    Kuntz, R. M., and W. M. Saltzman. Neutrophil motility in extracellular matrix gels: Mesh size and adhesion affect speed of migration. Biophys. J. 72:1472-1480, 1997.Google Scholar
  48. 48.
    Kuo, C. K., and P. X. Ma. lonically crosslinked alginate hydrogels as scaffolds for tissue engineering: 1. Structure, gelation rate and mechanical properties. Biomaterials 22:511-521, 2001.Google Scholar
  49. 49.
    Langer, R. Biomaterials: Status, challenges, and perspectives. AICHE J. 46:1286-1289, 2000.Google Scholar
  50. 50.
    Langer, R., and J. P. Vacanti. Tissue engineering. Science 260:920-926, 1993.Google Scholar
  51. 51.
    Laurencin, C. T., M. A. Attawia, H. E. Elgendy, and K. M. Herbert. Tissue engineered bone-regeneration using degradable polymers: The formation of mineralized matrices. Bone 19:S93-S99, 1996.Google Scholar
  52. 52.
    Laurencin, C. T., S. F. ElAmin, S. E. Ibim, D. A. Willoughby, M. Attawia, H. R. Allcock, and A. A. Ambrosio. A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration. J. Biomed. Mater. Res. 30:133-138, 1996.Google Scholar
  53. 53.
    Lee, K. Y., E. Alsberg, and D. J. Mooney. Degradable and injectable poly(aldehyde guluronate) hydrogels for bone tissue engineering. J. Biomed. Mater. Res. 56:228-233, 2001.Google Scholar
  54. 54.
    Li, W. J., C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J. Biomed. Mater. Res. 60:613-621, 2002.Google Scholar
  55. 55.
    Li, W. J., C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res. 60:613-621, 2002.Google Scholar
  56. 56.
    Liao, C. J., C. F. Chen, J. H. Chen, S. F. Chiang, Y. J. Lin, and K. Y. Chang. Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method. J. Biomed. Mater. Res. 59:676-681, 2002.Google Scholar
  57. 57.
    Livingston, T., P. Ducheyne, and J. Garino. In vivo evaluation of a bioactive scaffold for bone tissue engineering. J. Biomed. Mat. Res. 62:1-13, 2002.Google Scholar
  58. 58.
    Lo, H., S. Kadiyala, S. E. Guggino, and K. W. Leong. Poly(L-lactic acid) foams with cell seeding and controlled-release capacity. J. Biomed. Mater. Res. 30:475-484, 1996.Google Scholar
  59. 59.
    Lutolf, M. R., F. E. Weber, H. G. Schmoekel, J. C. Schense, T. Kohler, R. Muller, and J. A. Hubbell. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat. Biotechnol. 21:513-518, 2003.Google Scholar
  60. 60.
    Lysaght, M. J., and J. Reyes. The growth of tissue engineering. Tissue Eng. 7:485-493, 2001.Google Scholar
  61. 61.
    Ma, P. X. Tissue engineering. In: Encyclopedia of Polymer Science and Technology, edited by J. I. Kroschwitz. Hoboken, NJ: Wiley, in press.Google Scholar
  62. 62.
    Ma, P. X., and J. W. Choi. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng. 7:23-33, 2001.Google Scholar
  63. 63.
    Ma, P. X., and R. Langer. Degradation, structure and properties of fibrous nonwoven poly(glycolic acid) scaffols for tissue engineering. In: Polymers in Medicine and Pharmacy, edited by A. G. Mikos, K. W. Leong, M. L. Radomsky, J. A. Tamada, and M. J. Yaszemski. Pittsburgh, PA: MRS, 1995, pp. 47-92.Google Scholar
  64. 64.
    Ma, P. X., and R. Langer. Fabrication of Biodegradable Polymer foams for cell transplantation and tissue engineering. In: Tissue Engineering Methods and Protocols, edited by M. Yarmush and J. Morgen. Totowa, NJ: Humana Press, 1998, pp. 47-92.Google Scholar
  65. 65.
    Ma, P. X., and R. Y. Zhang. Microtubular architecture of biodegradable polymer scaffolds. J. Biomed. Mater. Res. 56:469-477, 2001.Google Scholar
  66. 66.
    Ma, P. X., and R. Y. Zhang. Synthetic nano-scale fibrous extracellular matrix. J. Biomed. Mater. Res. 46:60-72, 1999.Google Scholar
  67. 67.
    Ma, P. X., R. Y. Zhang, G. Z. Xiao, and R. Franceschi. Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds. J. Biomed. Mater. Res. 54:284-293, 2001.Google Scholar
  68. 68.
    Maquet, V., and R. Jerome. Design of macroporous biodegradable polymer scaffolds for cell transplantation. Mater. Sci. Forum 250:15-42, 1997.Google Scholar
  69. 69.
    Marra, K. G., J. W. Szem, P. N. Kumta, P. A. DiMilla, and L. E. Weiss. In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. J. Biomed. Mater. Res. 47:324-335, 1999.Google Scholar
  70. 70.
    Matthews, J. A., G. E. Wnek, D. G. Simpson, and G. L. Bowlin. Electrospinning of collagen nanofibers. Biomacromolecules 3:232-238, 2002.Google Scholar
  71. 71.
    Mikos, A. G., M. D. Lyman, L. E. Freed, and R. Langer. Wetting of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams for tissue culture. Biomaterials 15:55-58, 1994.Google Scholar
  72. 72.
    Mikos, A. G., A. J. Thorsen, L. A. Czerwonka, Y. Bao, R. Langer, D. N. Winslow, and J. P. Vacanti. Preparation and characterization of Poly(L-lactic acid) foams. Polymer 35:1068-1077, 1994.Google Scholar
  73. 73.
    Miyamoto, S., and K. Takaoka. Bone induction and bone repair by composites of bone morphogenetic protein and biodegradable synthetic-polymers. Ann. Chir. Gynaecol. 82:69-75, 1993.Google Scholar
  74. 74.
    Mizuno, M., M. Shindo, D. Kobayashi, E. Tsuruga, A. Amemiya, and Y. Kuboki. Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo. Bone 20:101-107, 1997.Google Scholar
  75. 75.
    Mooney, D. J., D. F. Baldwin, N. P. Suh, L. P. Vacanti, and R. Langer. Novel approach to fabricate porous sponges of poly(D, L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17:1417-1422, 1996.Google Scholar
  76. 76.
    Nam, Y. S., and T. G. Park. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J. Biomed. Mater. Res. 47:8-17, 1999.Google Scholar
  77. 77.
    Neff, J. A., K. D. Caldwell, and P. A. Tresco. A novel method for surface modification to promote cell attachment to hydrophobic substrates. J. Biomed. Mater. Res. 40:511-519, 1998.Google Scholar
  78. 78.
    Nitschke, M., G. Schmack, A. Janke, F. Simon, D. Pleul, and C. Werner. Low pressure plasma treatment of poly(3-hydroxybutyrate): Toward tailored polymer surfaces for tissue engineering scaffolds. J. Biomed. Mater. Res. 59:632-638, 2002.Google Scholar
  79. 79.
    Peter, S. J., M. J. Miller, A. W. Yasko, M. J. Yaszemski, and A. G. Mikos. Polymer concepts in tissue engineering. J. Biomed. Mater. Res. 43:422-427, 1998.Google Scholar
  80. 80.
    Peter, S. J., M. J. Yaszemski, L. J. Suggs, R. G. Payne, R. Langer, W. C. Hayes, M. R. Unroe, L. B. Alemany, P. S. Engel, and A. G. Mikos. Characterization of partially saturated poly(propylene fumarate) for orthopaedic application. J. Biomater. Sci. Polym. Edn. 8:893-904, 1997.Google Scholar
  81. 81.
    Prestwich, G. D., and H. Matthew. Hybrid, composite, and complex biomaterials. Ann. N.Y. Acad. Sci. 961:106-108, 2002.Google Scholar
  82. 82.
    Puleo, D. A., L. A. Holleran, R. H. Doremus, and R. Bizios. Osteoblast Responses to Orthopedic Implant Materials Invitro. J. Biomed. Mater. Res. 25:711-723, 1991.Google Scholar
  83. 83.
    Reneker, D. H., and I. Chun. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216-223, 1996.Google Scholar
  84. 84.
    Sachs, E., M. Cima, P. Williams, D. Brancazio, and J. Cornie. 3-Dimensional printing—Rapid tooling and prototypes directly from a Cad model. J. Eng. Ind.-Trans. ASME. 114:481-488, 1992.Google Scholar
  85. 85.
    Schmedlen, R. H., K. S. Masters, and J. L. West. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 23:4325-4332, 2002.Google Scholar
  86. 86.
    Schoof, H., J. Apel, I. Heschel, and G. Rau. Control of pore structure and size in freeze-dried collagen sponges. J. Biomed. Mater. Res. 58:352-357, 2001.Google Scholar
  87. 87.
    Schugens, C., V. Maquet, C. Grandfils, R. Jerome, and P. Teyssie. Polylactide macroporous biodegradable implants for cell transplantation. 2. Preparation of polylactide foams by liquid–liquid phase separation. J. Biomed. Mater. Res. 30:449-461, 1996.Google Scholar
  88. 88.
    Shang, Q., Z. Wang, W. Liu, Y. Shi, L. Cui, and Y. Cao. Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells. J. Craniofac. Surg. 12:586-593, 2001.Google Scholar
  89. 89.
    Sikavitsas, V. I., G. N. Bancroft, and A. G. Mikos. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J. Biomed. Mat. Res. 62:136-148, 2002.Google Scholar
  90. 90.
    Solchaga, L. A., J. E. Dennis, V. M. Goldberg, and A. I. Caplan. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J. Orthop. Res. 17:205-213, 1999.Google Scholar
  91. 91.
    Tan, J., and W. M. Saltzman. Influence of synthetic polymers on neutrophil migration in three-dimensional collagen gels. J. Biomed. Mat. Res. 46:465-474, 1999.Google Scholar
  92. 92.
    Thomson, R. C., M. C. Wake, M. J. Yaszemski, and A. G. Mikos. Biodegradable polymer scaffolds to regenerate organs. Adv. Polym. Sci. 122:245-274, 1995.Google Scholar
  93. 93.
    Thomson, R. C., M. J. Yaszemski, J. M. Powers, and A. G. Mikos. Fabrication of Biodegradable Polymer Scaffolds to Engineer Trabecular Bone. J. Biomater. Sci.-Polym. Ed. 7:23-38, 1995.Google Scholar
  94. 94.
    Thomson, R. C., M. J. Yaszemski, J. M. Powers, and A. G. Mikos. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration. Biomaterials 19:1935-1943, 1998.Google Scholar
  95. 95.
    Uhrich, K. E., A. Gupta, T. T. Thomas, C. T. Laurencin, and R. Langer. Synthesis and characterization of degradable poly(anhydride-co-imides). Macromolecules 28:2184-2193, 1995.Google Scholar
  96. 96.
    Vacanti, C. A., and J. P. Vacanti. Bone and cartilage reconstruction. In: Principles of Tissue Engineering, edited by R. P. Lanza, R. Langer, and W. L. Chick. Austin, TX: R. G. Landes Company, 1997, pp. 47-92.Google Scholar
  97. 97.
    Vacanti, J. P., M. A. Morse, W. M. Saltzman, A. J. Domb, A. Perezatayde, R. Langer, C. L. mazzoni, and C. K. Breuer. Selective cell transplantation using bioabsorbable artificial polymers as matrices. J. Pediatr. Surg. 23:3-9, 1988.Google Scholar
  98. 98.
    Wang, X., X. Li, R. A. Bank, and C. M. Agrawal. Effects of collagen unwinding and cleavage on the mechanical integrity of the collagen network in bone. Calcif. Tissue Int. 71:186-192, 2002.Google Scholar
  99. 99.
    Webster, T. J., C. Ergun, R. H. Doremus, R. W. Siegel, and R. Bizios. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J. Biomed. Mater. Res. 51:475-483, 2000.Google Scholar
  100. 100.
    Wei, G., and P. X. Ma. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials, in press.Google Scholar
  101. 101.
    Whang, K., C. H. Thomas, K. E. Healy, and G. Nuber. A novel method to fabricate bioabsorbable scaffolds. Polymer 36:837-842, 1995.Google Scholar
  102. 102.
    Whang, K., D. C. Tsai, E. K. Nam, M. Aitken, S. M. Sprague, P. K. Patel, and K. E. Healy. Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds. J. Biomed. Mater. Res. 42:491-499, 1998.Google Scholar
  103. 103.
    Woo, K. M., V. J. Chen, and P. X. Ma. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J. Biomed. Mater. Res. A67:531-537, 2003.Google Scholar
  104. 104.
    Yamamoto, M., K. Kato, and Y. Ikada. Ultrastructure of the interface between cultured osteoblasts and surface-modified polymer substrates. J. Biomed. Mater. Res. 37:29-36, 1997.Google Scholar
  105. 105.
    Yang, S. F., K. F. Leong, Z. H. Du, and C. K. Chua. The design of scaffolds for use in tissue engineering. Part 1. Traditional factors. Tissue Eng. 7:679-689, 2001.Google Scholar
  106. 106.
    Yang, S. F., K. F. Leong, Z. H. Du, and C. K. Chua. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 8:1-11, 2002.Google Scholar
  107. 107.
    Yaszemski, M. J., R. G. Payne, W. C. Hayes, R. Langer, T. B. Aufdemorte, and A. G. Mikos. The ingrowth of new bone tissue and initial mechanical properties of a degradable polymeric composite scaffold. Tissue Eng. 1:41-52, 1995.Google Scholar
  108. 108.
    Yoshimoto, H., Y. M. Shin, H. Terai, and J. P. Vacanti. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077-2082, 2003.Google Scholar
  109. 109.
    Zhang, R., and P. X. Ma. Processing of polymer scaffolds: Phase separation. In: Methods of Tissue Engineering, edited by A. Atala and R. Lanza. San Diego, CA: Academic Press, 2001, pp. 47-92.Google Scholar
  110. 110.
    Zhang, R. Y., and P. X. Ma. Poly(alpha-hydroxyl acids) hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J. Biomed. Mater. Res. 44:446-455, 1999.Google Scholar
  111. 111.
    Zhang, R. Y., and P. X. Ma. Porous poly(L-lactic acid)/apatite composites created by biomimetic process. J. Biomed. Mater. Res. 45:285-293, 1999.Google Scholar
  112. 112.
    Zhang, R. Y., and P. X. Ma. Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. J. Biomed. Mater. Res. 52:430-438, 2000.Google Scholar

Copyright information

© Biomedical Engineering Society 2004

Authors and Affiliations

  • Xiaohua Liu
    • 1
  • Peter X. Ma
    • 1
    • 2
    • 3
  1. 1.Department of Biologic and Materials SciencesUniversity of MichiganAnn Arbor
  2. 2.Department of Biomedical EngineeringUniversity of MichiganAnn Arbor
  3. 3.Macromolecular Science and Engineering CenterUniversity of MichiganAnn Arbor

Personalised recommendations