Skip to main content
Log in

Bone Marrow Stromal Cells (BMSCs) in Bone Engineering: Limitations and Recent Advances

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Bone marrow stromal cells (BMSCs) have been isolated for the first time by Friedenstein et al. and since then have been considered the progenitor cells for the skeletal tissues. Indeed BMSCs are clonogenic, fibroblastic in shape, and can differentiate along multiple lineages such as osteoblasts, chondrocytes, adipocytes, and hematopoiesis-supportive stroma. When implanted in vivo on a three-dimensional bioceramic scaffold into immunocompromised mice, BMSCs form bone and hematopoiesis-supportive stroma. The ease of harvest from a donor bone marrow together with the ability to form bone in vivo make BMSCs ideal for clinical applications. Thus, ex vivo expanded BMSCs have been employed, first in large animal models, then in human clinical trials, to repair large bone segmental defects. Further investigation of the expanded BMSC population led to the observation that in vitro expansion appears a limiting passage: cells tend to senesce and lose their multidifferentiation potential with time in culture. To overcome these limitations, two approaches have been proposed: (1) identification of the appropriate culture conditions to prevent senescence by possibly selecting a subpopulation with stem cell characteristics, and (2) engineering of the cells by transfection with the telomerase gene to prevent cells from telomere shortening and consequent aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 1Ahdjoudj, S., F. Lasmoles, B. O. Oyajobi, A. Lomri, P. Delannoy, and P. J. Marie. Reciprocal control of osteoblast/chondroblast and osteoblast/adipocyte differentiation of multipotential clonal human marrow stromal F/STRO-1(+) cells. J. Cell. Biochem. 81:23-38, 2001.

    Google Scholar 

  • 2Asakura, A., M. Komaki, and M. Rudnicki. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68:245-253, 2001.

    Google Scholar 

  • 3Banfi, A., G. Bianchi, R. Notaro, L. Luzzatto, R. Cancedda, and R. Quarto. Replicative aging and gene expression in long-term cultures of human bone marrow stromal cells. Tissue Eng. 8:901-910, 2002.

    Google Scholar 

  • 4Banfi, A., A. Muraglia, B. Dozin, M. Mastrogiacomo, R. Cancedda, and R. Quarto. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy. Exp. Hematol. 28:707-715, 2000.

    Google Scholar 

  • 5Beresford, J. N., J. H. Bennett, C. Devlin, P. S. Leboy, and M. E. Owen. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J. Cell. Sci. 102:341-351, 1992.

    Google Scholar 

  • 6Bianchi, G., A. Muraglia, A. Daga, G. Corte, R. Cancedda, and R. Quarto. Microenvironment and stem properties of bone marrow-derived mesenchymal cells. Wound Repair Regen. 9:460-466, 2001.

    Google Scholar 

  • 7Bianco, P., and G. Cossu. Uno, nessuno e centomila: Searching for the identity of mesodermal progenitors. Exp. Cell. Res. 251:257-263, 1999.

    Google Scholar 

  • 8Bianco, P., M. Riminucci, S. Gronthos, and P. G. Robey. Bone marrow stromal stem cells: Nature, biology, and potential applications. Stem Cells 19:180-192, 2001.

    Google Scholar 

  • 9Broccoli, D., J. W. Young, and T. de Lange. Telomerase activity in normal and malignant hematopoietic cells. Proc. Natl. Acad. Sci. U.S.A. 92:9082-9086, 1995.

    Google Scholar 

  • 10Bruder, S. P., N. Jaiswal, and S. E. Haynesworth. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell. Biochem. 64:278-294, 1997.

    Google Scholar 

  • 11Bruder, S. P., K. H. Kraus, V. M. Goldberg, and S. Kadiyala. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J. Bone Joint Surg. Am. 80:985-996, 1998.

    Google Scholar 

  • 12De Bari, C., F. Dell'Accio, F. Vandenabeele, J. R. Vermeesch, J. M. Raymackers, and F. P. Luyten. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J. Cell Biol. 160:909-918, 2003.

    Google Scholar 

  • 13Derubeis, A. R., M. Mastrogiacomo, R. Cancedda, and R. Quarto. Osteogenic potential of rat spleen stromal cells. Eur. J. Cell Biol. 82:175-181, 2003.

    Google Scholar 

  • 14Doherty, M. J., B. A. Ashton, S. Walsh, J. N. Beresford, M. E. Grant, and A. E. Canfield. Vascular pericytes express osteogenic potential in vitro and in vivo. J. Bone Miner. Res. 13:828-838, 1998.

    Google Scholar 

  • 15Ferrari, G., G. Cusella-De Angelis, M. Coletta, E. Paolucci, A. Stornaiuolo, G. Cossu, and F. Mavilio. Muscle regeneration by bone marrow-derived myogenic progenitors [see comments]. Science 279:1528-1530, 1998.

    Google Scholar 

  • 16Friedenstein, A. J. Precursor cells of mechanocytes. Int. Rev. Cytol. 47:327-359, 1976.

    Google Scholar 

  • 17Friedenstein, A. J. Marrow stromal fibroblasts. Calcif. Tissue Int. 56:S17, 1995.

    Google Scholar 

  • 18Friedenstein, A. J., R. K. Chailakhyan, and U. V. Gerasimov. Bone marrow osteogenic stem cells: In vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 20:263-272, 1987.

    Google Scholar 

  • 19Gronthos, S., and P. J. Simmons. The growth factor requirements of STRO-1-positive human bone marrow stromal precursors under serum-deprived conditions in vitro. Blood 85:929-940, 1995.

    Google Scholar 

  • 20Harley, C. B., A. B. Futcher, and C. W. Greider. Telomeres shorten during ageing of human fibroblasts. Nature 345:458-460, 1990.

    Google Scholar 

  • 21Kawano, Y., M. Kobune, M. Yamaguchi, K. Nakamura, Y. Ito, K. Sasaki, S. Takahashi, T. Nakamura, H. Chiba, T. Sato, T. Matsunaga, H. Azuma, K. Ikebuchi, H. Ikeda, J. Kato, Y. Niitsu, and H. Hamada. Ex vivo expansion of human umbilical cord hematopoietic progenitor cells using a coculture system with human telomerase catalytic subunit (hTERT)-transfected human stromal cells. Blood 101:532-540, 2003.

    Google Scholar 

  • 22Kim, N. W., M. A. Piatyszek, K. R. Prowse, C. B. Harley, M. D. West, P. L. Ho, G. M. Coviello, W. E. Wright, S. L. Weinrich, and J. W. Shay. Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011-2015, 1994.

    Google Scholar 

  • 23Kolquist, K. A., L. W. Ellisen, C. M. Counter, M. Meyerson, L. K. Tan, R. A. Weinberg, D. A. Haber, and W. L. Gerald. Expression of TERT in early premalignant lesions and a subset of cells in normal tissues. Nat. Genet. 19:182-186, 1998.

    Google Scholar 

  • 24Kon, E., A. Muraglia, A. Corsi, P. Bianco, M. Marcacci, I. Martin, A. Boyde, I. Ruspantini, P. Chistolini, M. Rocca, R. Giardino, R. Cancedda, and R. Quarto. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J. Biomed. Mater. Res. 49:328-337, 2000.

    Google Scholar 

  • 25Kuznetsov, S. A., A. J. Friedenstein, and P. G. Robey. Factors required for bone marrow stromal fibroblast colony formation in vitro. Br. J. Haematol. 97:561-570, 1997.

    Google Scholar 

  • 26Kuznetsov, S. A., P. H. Krebsbach, K. Satomura, J. Kerr, M. Riminucci, D. Benayahu, and P. G. Robey. Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J. Bone Miner. Res. 12:1335-1347, 1997.

    Google Scholar 

  • 27Lennon, D. P., S. E. Haynesworth, R. G. Young, J. E. Dennis, and A. I. Caplan. A chemically defined medium supports in vitro proliferation and maintains the osteochondral potential of rat marrow-derived mesenchymal stem cells. Exp. Cell. Res. 219:211-222, 1995.

    Google Scholar 

  • 28Mardon, H. J., J. Bee, K. von der Mark, and M. E. Owen. Development of osteogenic tissue in diffusion chambers from early precursor cells in bone marrow of adult rats. Cell. Tissue Res. 250:157-165, 1987.

    Google Scholar 

  • 29Martin, I., A. Muraglia, G. Campanile, R. Cancedda, and R. Quarto. Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology 138:4456-4462, 1997.

    Google Scholar 

  • 30Muraglia, A., R. Cancedda, and R. Quarto. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J. Cell Sci. 113:1161-1166, 2000.

    Google Scholar 

  • 31Muraglia, A., I. Martin, R. Cancedda, and R. Quarto. A nude mouse model for human bone formation in unloaded conditions. Bone 22:131S-134S, 1998.

    Google Scholar 

  • 32Owen, M., and A. J. Friedenstein. Stromal stem cells: Marrow-derived osteogenic precursors. Ciba Found. Symp. 136:42-60, 1988.

    Google Scholar 

  • 33Petersen, B. E., W. C. Bowen, K. D. Patrene, W. M. Mars, A. K. Sullivan, N. Murase, S. S. Boggs, J. S. Greenberger, and J. P. Goff. Bone marrow as a potential source of hepatic oval cells. Science 284:1168-1170, 1999.

    Google Scholar 

  • 34Petite, H., V. Viateau, W. Bensaid, A. Meunier, C. de Pollak, M. Bourguignon, K. Oudina, L. Sedel, and G. Guillemin. Tissue-engineered bone regeneration. Nat. Biotechnol. 18:959-963, 2000.

    Google Scholar 

  • 35Pitaru, S., S. Kotev-Emeth, D. Noff, S. Kaffuler, and N. Savion. Effect of basic fibroblast growth factor on the growth and differentiation of adult stromal bone marrow cells: Enhanced development of mineralized bone-like tissue in culture. J. Bone Miner. Res. 8:919-929, 1993.

    Google Scholar 

  • 36Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284:143-147, 1999.

    Google Scholar 

  • 37Prockop, D. J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71-74, 1997.

    Google Scholar 

  • 38Quarto, R., M. Mastrogiacomo, R. Cancedda, S. M. Kutepov, V. Mukhachev, A. Lavroukov, E. Kon, and M. Marcacci. Repair of large bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med. 344:385-386, 2001.

    Google Scholar 

  • 39Quito, F. L., J. Beh, O. Bashayan, C. Basilico, and R. S. Basch. Effects of fibroblast growth factor-4 (k-FGF) on long-term cultures of human bone marrow cells. Blood 87:1282-1291, 1996.

    Google Scholar 

  • 40Reyes, M., T. Lund, T. Lenvik, D. Aguiar, L. Koodie, and C. M. Verfaillie. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615-2625, 2001.

    Google Scholar 

  • 41Sanchez-Ramos, J., S. Song, F. Cardozo-Pelaez, C. Hazzi, T. Stedeford, A. Willing, T. B. Freeman, S. Saporta, W. Janssen, N. Patel, D. R. Cooper, and P. R. Sanberg. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol. 164:247-256, 2000.

    Google Scholar 

  • 42Sekiya, I., J. T. Vuoristo, B. L. Larson, and D. J. Prockop. in vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc. Natl. Acad. Sci. U.S.A. 99:4397-4402, 2002.

    Google Scholar 

  • 43Shi, S., S. Gronthos, S. Chen, A. Reddi, C. M. Counter, P. G. Robey, and C. Y. Wang. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat. Biotechnol. 20:587-591, 2002.

    Google Scholar 

  • 44Simonsen, J. L., C. Rosada, N. Serakinci, J. Justesen, K. Stenderup, S. I. Rattan, T. G. Jensen, and M. Kassem. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat. Biotechnol. 20:592-596, 2002.

    Google Scholar 

  • 45Tallheden, T., J. E. Dennis, D. P. Lennon, E. Sjogren-Jansson, A. I. Caplan, and A. Lindahl. Phenotypic plasticity of human articular chondrocytes. J. Bone Joint Surg. Am. 85-A:93-100, 2003.

    Google Scholar 

  • 46Vacanti, C. A., L. J. Bonassar, M. P. Vacanti, and J. Shufflebarger. Replacement of an avulsed phalanx with tissue-engineered bone. N. Engl. J. Med. 344:1511-1514, 2001.

    Google Scholar 

  • 47Wickham, M. Q., G. R. Erickson, J. M. Gimble, T. P. Vail, and F. Guilak. Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clin. Orthop. 412:196-212, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derubeis, A.R., Cancedda, R. Bone Marrow Stromal Cells (BMSCs) in Bone Engineering: Limitations and Recent Advances. Annals of Biomedical Engineering 32, 160–165 (2004). https://doi.org/10.1023/B:ABME.0000007800.89194.95

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ABME.0000007800.89194.95

Navigation