Skip to main content
Log in

Evolution of Vertebroplasty: A Biomechanical Perspective

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This paper is a collection of computational, finite element studies on vertebroplasty performed in our laboratory, which attempts to provide new biomechanical evidence and a fresh perspective into how the procedure can be implemented more effectively toward the goal of preventing osteoporosis-related fractures. The percutaneous application of a bone cement to vertebral defects associated with osteoporotic vertebral compression fracture has proven clinical successful in alleviating back pain. When the biomechanical efficacy of the procedure was examined, however, vertebroplasty was found to be limited in its ability to provide sufficient augmentation to prevent further fractures without risking complications arising from cement extravasations. The procedure may instead be more efficient biomechanically as a prophylactic treatment, to mechanically reinforce osteoporotic vertebrae at risk for fracture. Patient selection for such intervention may be reliably achieved with the more accurate fracture risk assessments based on vertebral strength, predicted using geometrically detailed, specimen-specific finite element models, rather than on bone density alone. Optimal cement volume, placement, and material properties were also recommended. The future of vertebroplasty involving biodegradable augmentation material laced with osteogenic agents that upon release will stimulate new bone growth and increase bone mass was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 1Ahmed, A. I., G. M. Blake, J. M. Rymer, and I. Fogelman. Screening for osteopenia and osteoporosis: Do the accepted normal ranges lead to overdiagnosis? Osteoporos. Int. 7:432-438, 1997.

    Google Scholar 

  • 2Alonge, L. FDA Public Health Web Notification: Complications Related to the Use of Bone Cement in Treating Compression Fractures of the Spine. Available at www.fda.gov/cdrh/safety/bonecement.pdf, 2003.

  • 3Amar, A. P., D. W. Larsen, N. Esnaashari, F. C. Albuquerque, S. D. Lavine, and G. P. Teitelbaum. Percutaneous transpedicular polymethylmethacrylate vertebroplasty for the treatment of spinal compression fractures. Neurosurgery 49:1105-1114, 2001; Discussion 1114–1105.

    Google Scholar 

  • 4Asano, S., K. Kaneda, S. Umehara, and S. Tadano. The mechanical properties of the human L4-5 functional spinal unit during cyclic loading. The structural effects of the posterior elements. Spine 17:1343-1352, 1992.

    Google Scholar 

  • 5Bai, B., L. M. Jazrawi, F. J. Kummer, and J. M. Spivak. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae 24 and the management of vertebral compression fractures. Spine 24:1521-1526, 1999.

    Google Scholar 

  • 6Baroud, G., J. Nemes, P. Heini, and T. Steffen. Load shift of the intervertebral disc after a vertebroplasty: A finite-element study. Eur. Spine. J. 2003.

  • 7Barr, J. D., M. S. Barr, T. J. Lemley, and R. M. McCann. Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine 25:923-928, 2000.

    Google Scholar 

  • 8Belkoff, S. M., M. Maroney, D. C. Fenton, and J. M. Mathis. An in vitro biomechanical evaluation of bone cements used in percutaneous vertebroplasty. Bone 25:23S-26S, 1999.

    Google Scholar 

  • 9Belkoff, S. M., J. M. Mathis, E. M. Erbe, and D. C. Fenton. Biomechanical evaluation of a new bone cement for use in vertebroplasty. Spine 25:1061-1064, 2000.

    Google Scholar 

  • 10Belkoff, S. M., J. M. Mathis, L. E. Jasper, and H. Deramond. The biomechanics of vertebroplasty. The effect of cement volume on mechanical behavior. Spine 26:1537-1541, 2001.

    Google Scholar 

  • 11Belkoff, S. M., J. M. Mathis, L. E. Jasper, and H. Deramond. An ex vivo biomechanical evaluation of a hydroxyapatite cement for use with vertebroplasty. Spine 26:1542-1546, 2001.

    Google Scholar 

  • 12Berlemann, U., S. J. Ferguson, L. P. Nolte, and P. F. Heini. Adjacent vertebral failure after vertebroplasty. A biomechanical investigation J. Bone Joint Surg. Br. 84:748-752, 2002.

    Google Scholar 

  • 13Biggemann, M., D. Hilweg, S. Seidel, M. Horst, and P. Brinckmann. Risk of vertebral insufficiency fractures in relation to compressive strength predicted by quantitative computed tomography. Eur. J. Radiol. 13:6-10, 1991.

    Google Scholar 

  • 14Brinckmann, P., M. Biggemann, and D. Hilweg. Prediction of the compressive strength of human lumbar vertebrae. Spine 14:606-610, 1989.

    Google Scholar 

  • 15Cooper, C., E. J. Atkinson, W. M. O'Fallon, and L. J. Melton, III. Incidence of clinically diagnosed vertebral fractures: A population-based study in Rochester, Minnesota, 1985–1989. J. Bone Miner. Res. 7:221-227, 1992.

    Google Scholar 

  • 16Cortet, B., A. Cotten, N. Boutry, F. Dewatre, R. M. Flipo, B. Duquesnoy, P. Chastanet, and B. Delcambre. Percutaneous vertebroplasty in patients with osteolytic metastases or multiple myeloma. Rev. Rhum. Engl. 64:177-183, 1997.

    Google Scholar 

  • 17Cortet, B., A. Cotten, N. Boutry, R. M. Flipo, B. Duquesnoy, P. Chastanet, and B. Delcambre. Percutaneous vertebroplasty in the treatment of osteoporotic vertebral compression fractures: An open prospective study. J. Rheumatol. 26:2222-2228, 1999.

    Google Scholar 

  • 18Cotten, A., F. Dewatre, B. Cortet, R. Assaker, D. Leblond, B. Duquesnoy, P. Chastanet, and J. Clarisse. Percutaneous vertebroplasty for osteolytic metastases and myeloma: Effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology 200:525-530, 1996.

    Google Scholar 

  • 19Courtney, A. C., W. C. Hayes, and L. J. Gibson. Age-related differences in postyield damage in human cortical bone. Experiment and model. J. Biomech. 29:1463-1471, 1996.

    Google Scholar 

  • 20Cyteval, C., M. P. Sarrabere, J. O. Roux, E. Thoma, C. Jorgensen, F. Blotman, J. Sany, and P. Taourel. Acute osteoporotic vertebral collapse: Open study on percutaneous injection of acrylic surgical cement in 20 patients. AJR Am. J. Roentgenol. 173:1685-1690, 1999.

    Google Scholar 

  • 21Dean, J. R., K. T. Ison, and P. Gishen. The strengthening effect of percutaneous vertebroplasty. Clin. Radiol. 55:471-476, 2000.

    Google Scholar 

  • 22Debussche-Depriester, C. Percutaneous vertebroplasty with acrylic cement in the treatment of osteoporotic vertebral crush fracture syndrome. Neuroradiology 33:149-152, 1991.

    Google Scholar 

  • 23Deramond, H., C. Depriester, P. Galibert, and D. Le Gars. Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol. Clin. N. Am. 36:533-546, 1998.

    Google Scholar 

  • 24Deramond, H., C. Depriester, P. Toussaint, and P. Galibert. Percutaneous Vertebroplasty. Semin. Musculoskelet. Radiol. 1:285-296, 1997.

    Google Scholar 

  • 25Deramond, H., N. T. Wright, and S. M. Belkoff. Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone. 25:17S-21S, 1999.

    Google Scholar 

  • 26Faulkner, K. G., C. E. Cann, and B. H. Hasegawa. Effect of bone distribution on vertebral strength: Assessment with patient-specific nonlinear finite element analysis. Radiology 179:669-674, 1991.

    Google Scholar 

  • 27Galibert, P., H. Deramond, P. Rosat, and D. Le Gars. [Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty]. Neurochirurgie 33:166-168, 1987.

    Google Scholar 

  • 28Genant, H. K. and S. Majumdar. High-resolution magnetic resonance imaging of trabecular bone structure. Osteoporos. Int. 7:S135-S139, 1997.

    Google Scholar 

  • 29Goldstein, S. A., R. Goulet, and D. McCubbrey. Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone. Calcif. Tissue Int. 53:S127-S132; discussion S132–123, 1993.

    Google Scholar 

  • 30Grados, F., C. Depriester, G. Cayrolle, N. Hardy, H. Deramond, and P. Fardellone. Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology (Oxford) 39:1410-1414, 2000.

    Google Scholar 

  • 31Guglielmi, G., C. C. Gluer, S. Majumdar, B. A. Blunt, and H. K. Genant. Current methods and advances in bone densitometry. Eur. Radiol. 5:129-139, 1995.

    Google Scholar 

  • 32Heini, P. F. Vertebroplasty: The value of prophylactic Augmentation. In: Vertebral Osteoporotic Compression Fractures, edited by M. Szpalski, R. Gunzburg. New York: Lippincott, Williams and Wilkins, 2003, pp. 211-221.

    Google Scholar 

  • 33Heini, P. F., U. Berlemann, M. Kaufmann, K. Lippuner, C. Fankhauser, and P. van Landuyt. Augmentation of mechanical properties in osteoporotic vertebral bones—A biomechanical investigation of vertebroplasty efficacy with different bone cements. Eur. Spine J. 10:164-171, 2001.

    Google Scholar 

  • 34Hitchon, P. W., V. Goel, J. Drake, D. Taggard, M. Brenton, T. Rogge, and J. C. Torner. Comparison of the biomechanics of hydroxyapatite and polymethylmethacrylate vertebroplasty in a cadaveric spinal compression fracture model. J. Neurosurg. 95:215-220, 2001.

    Google Scholar 

  • 35Homminga, J., H. Weinans, W. Gowin, D. Felsenberg, and R. Huiskes. Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution. Spine 26:1555-1561, 2001.

    Google Scholar 

  • 36Ikeuchi, M., H. Yamamoto, T. Shibata, and M. Otani. Mechanical augmentation of the vertebral body by calcium phosphate cement injection. J. Orthop. Sci. 6:39-45, 2001.

    Google Scholar 

  • 37Jensen, M. E., and J. E. Dion. Vertebroplasty relieves osteoporosis pain. Diagn. Imaging (San Franc) 19:68, 71-62, 1997.

    Google Scholar 

  • 38Jensen, M. E., and J. E. Dion. Percutaneous vertebroplasty in the treatment of osteoporotic compression fractures. Neuroimaging Clin. N. Am. 10:547-568, 2000.

    Google Scholar 

  • 39Kaufmann, T. J., M. E. Jensen, P. A. Schweickert, W. F. Marx, and D. F. Kallmes. Age of fracture and clinical outcomes of percutaneous vertebroplasty. AJNR Am. J. Neuroradiol. 22:1860-1863, 2001.

    Google Scholar 

  • 40Keaveny, T. M., E. F. Wachtel, and D. L. Kopperdahl. Mechanical behavior of human trabecular bone after overloading. J. Orthop. Res. 17:346-353, 1999.

    Google Scholar 

  • 41Kopperdahl, D. L. 1998. Structural Consequences of Damage on the Mechanical Behavior of the Human Vertebral Body. University of California Berkeley, Berkeley, CA.

    Google Scholar 

  • 42Kopperdahl, D. L., and T. M. Keaveny. Yield strain behavior of trabecular bone. J. Biomech. 31:601-608, 1998.

    Google Scholar 

  • 43Kopperdahl, D. L., J. L. Pearlman, and T. M. Keaveny. Biomechanical consequences of an isolated overload on the human vertebral body. J. Orthop. Res. 18:685-690, 2000.

    Google Scholar 

  • 44Liebschner, M. A., D. L. Kopperdahl, W. S. Rosenberg, and T. M. Keaveny. Finite element modeling of the human thoracolumbar spine. Spine 28:559-565, 2003.

    Google Scholar 

  • 45Liebschner, M. A. K., W. S. Rosenberg, and T. M. Keaveny. Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Spine 26:1547-1554, 2001.

    Google Scholar 

  • 46Liebschner, M. A. K., K. Sun, and T. M. Keaveny. Non-linear finite element modeling of human vertebral bodies. Presented at 10th Annual Symposium on Computational Methods in Orthopaedic Biomechanics, Dallas, TX, 2002.

  • 47Lim, T. H., G. T. Brebach, S. M. Renner, W. J. Kim, J. G. Kim, R. E. Lee, G. B. Andersson, and H. S. An. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty. Spine 27:1297-1302, 2002.

    Google Scholar 

  • 48Lin, J. T. and J. M. Lane. Nonmedical management of osteoporosis. Curr. Opin. Rheumatol. 14:441-446, 2002.

    Google Scholar 

  • 49Lindsay, R., S. L. Silverman, C. Cooper, D. A. Hanley, I. Barton, S. B. Broy, A. Licata, L. Benhamou, P. Geusens, K. Flowers, H. Stracke, and E. Seeman. Risk of new vertebral fracture in the year following a fracture. JAMA 285:320-323, 2001.

    Google Scholar 

  • 50Martin, J. B., B. Jean, K. Sugiu, D. San Millan Ruiz, M. Piotin, K. Murphy, B. Rufenacht, M. Muster, and D. A. Rufenacht. Vertebroplasty: Clinical experience and follow-up results. Bone 25:11S-15S, 1999.

    Google Scholar 

  • 51Melick, H. G. H. Deformation and Failure of Polymer Glasses. PhD thesis. Technische Universiteit Eindhoven, Eindhoven, 2002.

    Google Scholar 

  • 52Murphy, K. J. and H. Deramond. Percutaneous vertebroplasty in benign and malignant disease. Neuroimaging Clin. N. Am. 10:535-545, 2000.

    Google Scholar 

  • 53Polikeit, A., L. P. Nolte, and S. J. Ferguson. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: Finite-element analysis. Spine 28:991-996, 2003.

    Google Scholar 

  • 54Riggs, B. L., H. W. Wahner, E. Seeman, K. P. Offord, W. L. Dunn, R. B. Mazess, K. A. Johnson, and L. J. Melton, III. Changes in bone mineral density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes. J. Clin. Invest. 70:716-723, 1982.

    Google Scholar 

  • 55San Millan Ruiz, D., K. Burkhardt, B. Jean, M. Muster, J. B. Martin, J. Bouvier, J. H. Fasel, D. A. Rufenacht, and A. M. Kurt. Pathology findings with acrylic implants. Bone 25:85S-90S, 1999.

    Google Scholar 

  • 56Schildhauer, T. A., A. P. Bennett, T. M. Wright, J. M. Lane, and P. F. O'Leary, Intravertebral body reconstruction with an injectable in situ-setting carbonated apatite: Biomechanical evaluation of a minimally invasive technique. J. Orthop. Res. 17:67-72, 1999.

    Google Scholar 

  • 57Silva, M. J., T. M. Keaveny, and W. C. Hayes. Computed tomography-based finite element analysis predicts failure loads and fracture patterns for vertebral sections. J. Orthop. Res. 16:300-308, 1998.

    Google Scholar 

  • 58Silva, M. J., C. Wang, T. M. Keaveny, and W. C. Hayes. Direct and computed tomography thickness measurements of the human, lumbar vertebral shell and endplate. Bone 15:409-414, 1994.

    Google Scholar 

  • 59Tohmeh, A. G., J. M. Mathis, D. C. Fenton, A. M. Levine, and S. M. Belkoff. Biomechanical efficacy of unipedicular versus bipedicular vertebroplasty for the management of osteoporotic compression fractures. Spine 24:1772-1776, 1999.

    Google Scholar 

  • 60Ulrich, D., B. van Rietbergen, A. Laib, and P. Ruegsegger. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25:55-60, 1999.

    Google Scholar 

  • 61Uppin, A. A., J. A. Hirsch, L. V. Centenera, B. A. Pfiefer, A. G. Pazianos, and I. S. Choi. Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology 226:119-124, 2003.

    Google Scholar 

  • 62Vesterby, A., L. Mosekilde, H. J. Gundersen, F. Melsen, K. Holme, and S. Sorensen. Biologically meaningful determinants of the in vitro strength of lumbar vertebrae. Bone 12:219-224, 1991.

    Google Scholar 

  • 63Weill, A., J. Chiras, J. M. Simon, M. Rose, T. Sola-Martinez, and E. Enkaoua. Spinal metastases: Indications for and results of percutaneous injection of acrylic surgical cement. Radiology 199:241-247, 1996.

    Google Scholar 

  • 64Yang, K. H., and A. I. King. Mechanism of facet load transmission as a hypothesis for low-back pain. Spine 9:557-565, 1984.

    Google Scholar 

  • 65Zoarski, G. H., P. Snow, W. J. Olan, M. J. Stallmeyer, B. W. Dick, J. R. Hebel, and M. De Deyne. Percutaneous vertebroplasty for osteoporotic compression fractures: Quantitative prospective evaluation of long-term outcomes. J. Vasc. Interv. Radiol. 13:139-148, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, K., Liebschner, M.A.K. Evolution of Vertebroplasty: A Biomechanical Perspective. Annals of Biomedical Engineering 32, 77–91 (2004). https://doi.org/10.1023/B:ABME.0000007793.49771.6d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ABME.0000007793.49771.6d

Navigation