Skip to main content
Log in

Design Characteristics for the Tissue Engineering of Cartilaginous Tissues

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Tissues like the temporomandibular joint (TMJ) disc and the knee meniscus are often mistakenly viewed as a tantamount to hyaline cartilage, largely due to the absence of a comprehensive understanding of the distinguishing properties of cartilaginous tissues. Because of this confusion, fibrocartilaginous tissue engineering attempts may not be based on suitable experimental designs. Fibrocartilaginous tissues are markedly different than hyaline cartilage; however, the dearth of knowledge related to their cellular and biochemical composition, as well as their bio- mechanical characteristics, is stunning. Hyaline articular cartilage is exclusively composed of chondrocytes that produce primarily type II collagen, whereas the TMJ disc and the knee meniscus have a mixed cell population of fibroblasts and cells similar to chondrocytes, which predominantly secrete type I collagen. Additionally, fibrocartilaginous tissues have a low glycosaminoglycan content, a low compressive modulus, and a high tensile modulus when compared to hyaline cartilage. Therefore, it is crucial for fibrocartilaginous tissue engineering attempts to be tissue-specific, utilizing the knowledge of the distinct and unique properties of these tissues. At the same time, advances and insights related to the science and engineering aspect of hyaline cartilage regeneration must be carefully considered for the in vitro engineering of fibrocartilaginous tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 1Adams, M. E., and H. Muir. The glycosaminoglycans of canine menisci. Biochem. J. 197:385-389, 1981.

    Google Scholar 

  • 2Akizuki, S., V. C. Mow, F. Muller, J. C. Pita, D. S. Howell, and D. H. Manicourt. Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J. Orthop. Res. 4:379-392, 1986.

    Google Scholar 

  • 3Ali, A. M., and M. M. Sharawy. An immunohistochemical study of collagen types III, VI and IX in rabbit craniomandibular joint tissues following surgical induction of anterior disk displacement. J. Oral Pathol. Med. 25:78-85, 1996.

    Google Scholar 

  • 4Athanasiou, K. A., M. P. Rosenwasser, J. A. Buckwalter, T. I. Malinin, and V. C. Mow. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J. Orthop. Res. 9:330-340, 1991.

    Google Scholar 

  • 5Axelsson, S., A. Holmlund, and A. Hjerpe. Glycosaminoglycans in normal and osteoarthrotic human temporomandibular joint disks. Acta Odontol. Scand. 50:113-119, 1992.

    Google Scholar 

  • 6Beatty, M. W., M.J. Bruno, L.R. Iwasaki, and J. C. Nickel. Strain rate dependent orthotropic properties of pristine and impulsively loaded porcine temporomandibular joint disk. J. Biomed. Mater. Res. 57:25-34, 2001.

    Google Scholar 

  • 7Beek, M., M. P. Aarnts, J. H. Koolstra, A. J. Feilzer, and T. M. van Eijden. Dynamic properties of the human temporomandibular joint disc. J. Dent. Res. 80:876-880, 2001.

    Google Scholar 

  • 8Berkovitz, B. K., and J. Pacy. Age changes in the cells of the intra-articular disc of the temporomandibular joints of rats and marmosets. Arch. Oral Biol. 45:987-995, 2000.

    Google Scholar 

  • 9Berkovitz, B. K., and H. Robertshaw. Ultrastructural quantification of collagen in the articular disc of the temporomandibular joint of the rabbit. Arch. Oral Biol. 38:91-95, 1993.

    Google Scholar 

  • 10Buckwalter, J. A., and H. J. Mankin. Articular cartilage: Tissue design and chondrocyte-matrix interactions. Instr. Course Lect. 47:477-486, 1998.

    Google Scholar 

  • 11Carvalho, R. S., E. H. Yen, and D. M. Suga. Glycosaminoglycan synthesis in the rat articular disk in response to mechanical stress. Am. J. Orthod. Dentofacial Orthop. 107:401-410, 1995.

    Google Scholar 

  • 12Cheung, H. S. Distribution of type I, II, III, and V in the pepsin solubilized collagens in bovine menisci. Connect. Tissue Res. 16:343-356, 1987.

    Google Scholar 

  • 13Collier, S., and P. Ghosh. Effects of transforming growth factor beta on proteoglycan synthesis by cell and explant cultures derived from the knee joint meniscus. Osteoarthritis Cartilage. 3:127-138, 1995.

    Google Scholar 

  • 14Darling, E. M., and K. A. Athanasiou. Articular cartilage bioreactors and bioprocesses. Tissue Eng. 9:9-26, 2003.

    Google Scholar 

  • 15Detamore, M. S., and K. A. Athanasiou. Motivation, characterization and strategy for tissue engineering the temporomandibular joint disc. Tissue Eng. 9:1065-1087, 2003.

    Google Scholar 

  • 16Detamore, M. S., and K. A. Athanasiou. Structure and function of the temporomandibular joint disc: Implications for tissue engineering. J. Oral Maxillofac. Surg. 61:494-506, 2003.

    Google Scholar 

  • 17Detamore, M. S., and K. A. Athanasiou. Tensile properties of the porcine temporomandibular joint disc. J. Biomech. Eng. 125:558-565, 2003.

    Google Scholar 

  • 18Detamore, M. S., J. N. Hegde, R. R. Wagle, A. J. Almarza, D. Montufar-Solis, P. J. Duke, and K. A. Athanasiou. Cell type and distribution in the porcine temporomandibular joint disc. J. Den. Res. Manuscript submitted for publication.

  • 19Dolwick, M. F. The temporomandibular joint: normal and abnormal anatomy. In: Internal Derangements of the Temporomandibular Joint, edited by C. A. Helms, R. W. Katzberg, and M. F. Dolwick. San Francisco: Radiology Research and Education Foundation, 1983, pp. 1-14.

    Google Scholar 

  • 20Eyre, D. R. Cartilage-specific collagens: Structural studies. In: Articular Cartilage and Osteoarthritis, edited by K. E. Kuettner. New York: Raven Press, 1992, pp. 119-131.

    Google Scholar 

  • 21Eyre, D. R. Collagen structure and function in articular cartilage: Metabolic changes in the development of osteoarthritis. In: Osteoarthritic Disorders: Workshop, Monterey, California, April 1994, edited by K. E. Kuettner, and V. M. Goldberg. Rosemont, IL: American Academy of Orthopaedic Surgeons, 1995, pp. 219-229.

    Google Scholar 

  • 22Eyre, D. R., and J. J. Wu. Collagen of fibrocartilage: A distinctive molecular phenotype in bovine meniscus. FEBS Lett. 158:265-270, 1983.

    Google Scholar 

  • 23Fithian, D. C., M. A. Kelly, and V. C. Mow. Material properties and structure–function relationships in the menisci. Clin. Orthop. 252:19-31, 1990.

    Google Scholar 

  • 24Fontenot, M. G. The viscoelasticity of human temporomandibular joint discs. Am. J. Phys. Anthropol. 66:168-169, 1985.

    Google Scholar 

  • 25Freed, L. E., A. P. Hollander, I. Martin, J. R. Barry, R. Langer, and G. Vunjak-Novakovic. Chondrogenesis in a cell–polymer–bioreactor system. Exp. Cell Res. 240:58-65, 1998.

    Google Scholar 

  • 26Gage, J. P., R. M. Shaw, and F. B. Moloney. Collagen type in dysfunctional temporomandibular joint disks. J. Prosthet. Dent. 74:517-520, 1995.

    Google Scholar 

  • 27Ghadially, F. N., J. M. Lalonde, and J. H. Wedge. Ultrastructure of normal and torn menisci of the human knee joint. J. Anat. 136(Pt. 4):773-791, 1983.

    Google Scholar 

  • 28Ghadially, F. N., I. Thomas, N. Yong, and J. M. Lalonde. Ultrastructure of rabbit semilunar cartilages. J. Anat. 125:499-517, 1978.

    Google Scholar 

  • 29Girdler, N. M. In vitro synthesis and characterization of a cartilaginous meniscus grown from isolated temporomandibular chondroprogenitor cells. Scand. J. Rheumatol. 27:446-453, 1998.

    Google Scholar 

  • 30Hasler, E. M., W. Herzog, J. Z. Wu, W. Muller, and U. Wyss. Articular cartilage biomechanics: Theoretical models, material properties, and biosynthetic response. Crit. Rev. Biomed. Eng. 27:415-488, 1999.

    Google Scholar 

  • 31Hellio Le Graverand, M. P., Y. Ou, T. Schield-Yee, L. Barclay, D. Hart, T. Natsume, and J. B. Rattner. The cells of the rabbit meniscus: Their arrangement, interrelationship, morphological variations and cytoarchitecture. J. Anat. 198:525-535, 2001.

    Google Scholar 

  • 32Herwig, J., E. Egner, and E. Buddecke. Chemical changes of human knee joint menisci in various stages of degeneration. Ann. Rheum. Dis. 43:635-640, 1984.

    Google Scholar 

  • 33Hu, J. C., and K. A. Athanasiou. Structure and function of articular cartilage. In: Handbook of Histology Methods for Bone and Cartilage, edited by Y. H. An and K. L. Martin. Totowa, NJ: Humana Press, 2003, pp. 73-95.

    Google Scholar 

  • 34Huang, C. Y., S. D. Matthews, R. G. Pollock, R. J. Pawluk, E. L. Flatow, L. U. Bigliani, and V. C. Mow. Regional and directional tensile properties of bovine glenohumeral cartilage. ASME Adv. Bioeng. 35:525-526, 1997.

    Google Scholar 

  • 35Ibarra, C., C. Jannetta, C. A. Vacanti, Y. Cao, T. H. Kim, J. Upton, and J. P. Vacanti. Tissue engineered meniscus: A potential new alternative to allogeneic meniscus transplantation. Transplant. Proc. 29:986-988, 1997.

    Google Scholar 

  • 36Ibarra, C., J. A. Koski, and R. F. Warren. Tissue engineering meniscus: Cells and matrix. Orthop. Clin. North Am. 31:411-418, 2000.

    Google Scholar 

  • 37Joshi, M. D., J. K. Suh, T. Marui, and S. L. Woo. Interspecies variation of compressive biomechanical properties of the meniscus. J. Biomed. Mater. Res. 29:823-828, 1995.

    Google Scholar 

  • 38Kempson, G. E. Mechanical properties of articular cartilage. In: The Joints and Synovial Fluid, edited by L. Sokoloff, New York: Academic Press, 1980, pp. 177-238.

    Google Scholar 

  • 39Kim, K. W., M. E. Wong, J. F. Helfrick, J. B. Thomas, and K. A. Athanasiou. Biomechanical characterization of the superior joint space of the porcine temporomandibular joint. Ann. Biomed. Eng. 31:924-930, 2003.

    Google Scholar 

  • 40Klompmaker, J., R. P. Veth, H. W. Jansen, H. K. Nielsen, J. H. de Groot, and A. J. Pennings. Meniscal replacement using a porous polymer prosthesis: A preliminary study in the dog. Biomaterials 17:1169-1175, 1996.

    Google Scholar 

  • 41Klompmaker, J., R. P. Veth, H. W. Jansen, H. K. Nielsen, J. H. de Groot, A. J. Pennings, and R. Kuijer. Meniscal repair by fibrocartilage in the dog: Characterization of the repair tissue and the role of vascularity. Biomaterials 17:1685-1691, 1996.

    Google Scholar 

  • 42Kopp, S. Topographical distribution of sulphated glycosaminoglycans in human temporomandibular joint disks. A histochemical study of an autopsy material. J. Oral Pathol. 5:265-276, 1976.

    Google Scholar 

  • 43Landesberg, R., E. Takeuchi, and J. E. Puzas. Cellular, biochemical and molecular characterization of the bovine temporomandibular joint disc. Arch. Oral Biol. 41:761-767, 1996.

    Google Scholar 

  • 44Leenslag, J. W., A. J. Pennings, R. P. H. Veth, H. K. L. Nielsen, and H. W. B. Jansen. A porous composite for reconstruction of meniscus lesions. In: Biological and Biomechanical Performance of Biomaterials: Proceedings of the Fifth European Conference on Biomaterials, Paris, France, September 4–6, 1985, edited by P. Christel, A. Meunier, and A. J. C. Lee, 1986 Amsterdam: Elsevier, 1986, p. 536.

    Google Scholar 

  • 45Maroudas, A. Different ways of expressing concentration of cartilage constituents with special reference to the tissue's organization and functional properties. In: Methods in Cartilage Research, edited by A. Maroudas and K. Kuettner, New York: Academic Press, 1990, pp. 211-212.

    Google Scholar 

  • 46Maroudas, A. Physicochemical properties of articular cartilage. In: Adult Articular Cartilage, edited by M. A. R. Freeman. Kent, England: Pitman Medical, 1979, pp. 215-290.

    Google Scholar 

  • 47Mauck, R. L., M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122:252-260, 2000.

    Google Scholar 

  • 48McDevitt, C. A., and R. J. Webber. The ultrastructure and biochemistry of meniscal cartilage. Clin. Orthop. 252:8-18, 1990.

    Google Scholar 

  • 49Milam, S. B., R. J. Klebe, R. G. Triplett, and D. Herbert. Characterization of the extracellular matrix of the primate temporomandibular joint. J. Oral Maxillofac. Surg. 49:381-391, 1991.

    Google Scholar 

  • 50Mills, D. K., D. J. Fiandaca, and R. P. Scapino. Morphologic, microscopic, and immunohistochemical investigations into the function of the primate TMJ disc. J. Orofac. Pain 8:136-154, 1994.

    Google Scholar 

  • 51Minarelli, A. M., M. Del Santo Junior, and E. A. Liberti. The structure of the human temporomandibular joint disc: A scanning electron microscopy study. J. Orofac. Pain 11:95-100, 1997.

    Google Scholar 

  • 52Minarelli, A. M., and E. A. Liberti. A microscopic survey of the human temporomandibular joint disc. J. Oral Rehabil. 24:835-840, 1997.

    Google Scholar 

  • 53Miosge, N., K. Flachsbart, W. Goetz, W. Schultz, H. Kresse, and R. Herken. Light and electron microscopical immunohistochemical localization of the small proteoglycan core proteins decorin and biglycan in human knee joint cartilage. Histochem. J. 26:939-945, 1994.

    Google Scholar 

  • 54Mizoguchi, I., P. G. Scott, C. M. Dodd, F. Rahemtulla, Y. Sasano, M. Kuwabara, S. Satoh, S. Saitoh, Y. Hatakeyama, M. Kagayama, and H. Mitani. An immunohistochemical study of the localization of biglycan, decorin and large chondroitin-sulphate proteoglycan in adult rat temporomandibular joint disc. Arch. Oral Biol. 43:889-898, 1998.

    Google Scholar 

  • 55Mow, V. C., D. C. Fithian, and M. A. Kelly. Fundamentals of articular cartilage and meniscus biomechanics. In: Articular and Knee Function: Basic Science and Arthroscopy, edited by J. W. Erwing. New York: Raven Press, 1990, pp. 1-18.

    Google Scholar 

  • 56Mueller, S. M., S. Shortkroff, T. O. Schneider, H. A. Breinan, I. V. Yannas, and M. Spector. Meniscus cells seeded in type I and type II collagen-GAG matrices in vitro. Biomaterials 20:701-709, 1999.

    Google Scholar 

  • 57Muir, I. H. M. Biochemistry. In: Adult Articular Cartilage, edited by M. A. R. Freeman. Tunbridge Wells, England: Pitman Medical, 1979, pp. 145-214.

    Google Scholar 

  • 58Nakano, T., C. M. Dodd, and P. G. Scott. Glycosaminoglycans and proteoglycans from different zones of the porcine knee meniscus. J. Orthop. Res. 15:213-220, 1997.

    Google Scholar 

  • 59Nakano, T., and P. G. Scott. Changes in the chemical composition of the bovine temporomandibular joint disc with age. Arch. Oral Biol. 41:845-853, 1996.

    Google Scholar 

  • 60Nakano, T., and P. G. Scott. A quantitative chemical study of glycosaminoglycans in the articular disc of the bovine temporomandibular joint. Arch. Oral Biol. 34:749-757, 1989.

    Google Scholar 

  • 61Nakata, K., K. Shino, M. Hamada, T. Mae, T. Miyama, H. Shinjo, S. Horibe, K. Tada, T. Ochi, and H. Yoshikawa. Human meniscus cell: Characterization of the primary culture and use for tissue engineering. Clin. Orthop. 391(Suppl):S208-S218, 2001.

    Google Scholar 

  • 62Okazaki, J., A. Kamada, Y. Higuchi, T. Kanabayashi, T. Sakaki, and Y. Gonda. Age changes in the rat temporomandibular joint articular disc: A biochemical study on glycosaminoglycan content. J. Oral Rehabil. 23:536-540, 1996.

    Google Scholar 

  • 63Petersen, W., and B. Tillmann. Collagenous fibril texture of the human knee joint menisci. Anat. Embryol (Berl.) 197:317-324, 1998.

    Google Scholar 

  • 64Poole, A. R., T. Kojima, T. Yasuda, F. Mwale, M. Kobayashi, and S. Laverty. Composition and structure of articular cartilage: a template for tissue repair. Clin. Orthop. 391(Suppl):S26-S33, 2001.

    Google Scholar 

  • 65Poole, A. R., L. C. Rosenberg, A. Reiner, M. Ionescu, E. Bogoch, and P. J. Roughley. Contents and distributions of the proteoglycans decorin and biglycan in normal and osteoarthritic human articular cartilage. J. Orthop. Res. 14:681-689, 1996.

    Google Scholar 

  • 66Poole, A. R., C. Webber, I. Pidoux, H. Choi, and L. C. Rosenberg. Localization of a dermatan sulfate proteoglycan (DS-PGII) in cartilage and the presence of an immunologically related species in other tissues. J. Histochem. Cytochem. 34:619-625, 1986.

    Google Scholar 

  • 67Proctor, C. S., M. B. Schmidt, R. R. Whipple, M. A. Kelly, and V. C. Mow. Material properties of the normal medial bovine meniscus. J. Orthop. Res. 7:771-782, 1989.

    Google Scholar 

  • 68Puelacher, W. C., J. Wisser, C. A. Vacanti, N. F. Ferraro, D. Jaramillo, and J. P. Vacanti. Temporomandibular joint disc replacement made by tissue-engineered growth of cartilage. J. Oral Maxillofac. Surg. 52:1172-1177; Discussion, 1177–1178, 1994.

    Google Scholar 

  • 69Rees, L. A. The structure and function of the mandibular joint. Br. Dent. J. 96:125-133, 1954.

    Google Scholar 

  • 70Rodkey, W. G., J. R. Steadman, and S. T. Li. A clinical study of collagen meniscus implants to restore the injured meniscus. Clin. Orthop. 367(Suppl):S281-S292, 1999.

    Google Scholar 

  • 71Sandell, L. J. Molecular biology of collagens in normal and osteoarthritic cartilage. In: Osteoarthritic Disorders: Workshop, Monterey, California, April 1994, edited by K. E. Kuettner and V. M. Goldberg, Rosemont, IL: American Academy of Orthopaedic Surgeons, 1995, pp. 131-146.

    Google Scholar 

  • 72Scapino, R. P., P. B. Canham, H. M. Finlay, and D. K. Mills. The behaviour of collagen fibres in stress relaxation and stress distribution in the jaw-joint disc of rabbits. Arch. Oral Biol. 41:1039-1052, 1996.

    Google Scholar 

  • 73Scott, P. G., T. Nakano, and C. M. Dodd. Isolation and characterization of small proteoglycans from different zones of the porcine knee meniscus. Biochim. Biophys. Acta 1336:254-262, 1997.

    Google Scholar 

  • 74Scott, P. G., T. Nakano, and C. M. Dodd. Small proteoglycans from different regions of the fibrocartilaginous temporomandibular joint disc. Biochim. Biophys. Acta 1244:121-128, 1995.

    Google Scholar 

  • 75Shengyi, T., and Y. Xu. Biomechanical properties and collagen fiber orientation of TMJ discs in dogs: Part 1. Gross anatomy and collagen fiber orientation of the discs. J. Craniomandib. Disord. 5:28-34, 1991.

    Google Scholar 

  • 76Sindelar, B. J., S. P. Evanko, T. Alonzo, S. W. Herring, and T. Wight. Effects of intraoral splint wear on proteoglycans in the temporomandibular joint disc. Arch. Biochem. Biophys. 379:64-70, 2000.

    Google Scholar 

  • 77Smith, R. L., J. Lin, M. C. Trindade, J. Shida, G. Kajiyama, T. Vu, A. R. Hoffman, M. C. van der Meulen, S. B. Goodman, D. J. Schurman, and D. R. Carter. Time-dependent effects of intermittent hydrostatic pressure on articular chondrocyte type II collagen and aggrecan mRNA expression. J. Rehabil. Res. Dev. 37:153-161, 2000.

    Google Scholar 

  • 78Springer, I. N., B. Fleiner, S. Jepsen, and Y. Acil. Culture of cells gained from temporomandibular joint cartilage on non-absorbable scaffolds. Biomaterials 22:2569-2577, 2001.

    Google Scholar 

  • 79Stockwell, R. A. Biology of Cartilage Cells. Biological Structure and Function, Vol. 7. New York: Cambridge University Press, 1979, viii, 329pp.

    Google Scholar 

  • 80Stone, K. R., W. G. Rodkey, R. Webber, L. McKinney, and J. R. Steadman. Meniscal regeneration with copolymeric collagen scaffolds. In vitro and in vivo studies evaluated clinically, histologically, and biochemically. Am. J. Sports Med. 20:104-111, 1992.

    Google Scholar 

  • 81Sweigart, M. A., and K. A. Athanasiou. Toward tissue engineering of the knee meniscus. Tissue Eng. 7:111-129, 2001.

    Google Scholar 

  • 82Sweigart, M. A., A. C. AufderHeide, and K. A. Athanasiou. Fibrochondrocytes and their use in tissue engineering of the meniscus. In: Topics in Tissue Engineering, edited by N. Ashammakhi and P. Ferretti, E-book, 2003, pp. 1-19, http://www.tissue-engineering-oc.com.

  • 83Tanaka, E., M. Tanaka, Y. Miyawaki, and K. Tanne. Viscoelastic properties of canine temporomandibular joint disc in compressive load-relaxation. Arch. Oral Biol. 44:1021-1026, 1999.

    Google Scholar 

  • 84Tanne, K., E. Tanaka, and M. Sakuda. The elastic modulus of the temporomandibular joint disc from adult dogs. J. Dent. Res. 70:1545-1548, 1991.

    Google Scholar 

  • 85Thomas, M., D. Grande, and R. H. Haug. Development of an in vitro temporomandibular joint cartilage analog. J. Oral Maxillofac. Surg. 49:854-856; Discussion, 857, 1991.

    Google Scholar 

  • 86Tissakht, M., and A. M. Ahmed. Tensile stress-strain characteristics of the human meniscal material. J. Biomech. 28:411-422, 1995.

    Google Scholar 

  • 87Venn, M., and A. Maroudas. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann. Rheum. Dis. 36:121-129, 1977.

    Google Scholar 

  • 88Verbruggen, G., R. Verdonk, E. M. Veys, P. Van Daele, P. De Smet, K. Van den Abbeele, B. Claus, and D. Baeten. Human meniscal proteoglycan metabolism in long-term tissue culture. Knee Surg. Sports Traumatol. Arthrosc. 4:57-63, 1996.

    Google Scholar 

  • 89Walsh, C. J., D. Goodman, A. I. Caplan, and V. M. Goldberg. Meniscus regeneration in a rabbit partial meniscectomy model. Tissue Eng. 5:327-337, 1999.

    Google Scholar 

  • 90Webber, R. J., M. G. Harris, and A. J. Hough, Jr. Cell culture of rabbit meniscal fibrochondrocytes: proliferative and synthetic response to growth factors and ascorbate. J. Orthop. Res. 3:36-42, 1985.

    Google Scholar 

  • 91Wong, M., P. Wuethrich, P. Eggli, and E. Hunziker. Zone-specific cell biosynthetic activity in mature bovine articular cartilage: A new method using confocal microscopic stereology and quantitative autoradiography. J. Orthop. Res. 14:424-432, 1996.

    Google Scholar 

  • 92Woo, S. L., W. H. Akeson, and G. F. Jemmott. Measurements of nonhomogeneous, directional mechanical properties of articular cartilage in tension. J. Biomech. 9:785-791, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almarza, A.J., Athanasiou, K.A. Design Characteristics for the Tissue Engineering of Cartilaginous Tissues. Annals of Biomedical Engineering 32, 2–17 (2004). https://doi.org/10.1023/B:ABME.0000007786.37957.65

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ABME.0000007786.37957.65

Navigation