Skip to main content
Log in

Influence of dissolved organic matter from terrestrial origin on the changes of dinoflagellate species composition in the Gulf of Riga, Baltic Sea

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A mesocosm experiment was used to investigate the effect of terrestrial-origin dissolved organic matter (DOM) on the development of dinoflagellates in natural summer phytoplankton from the Gulf of Riga. Seawater was collected in the central part of the Gulf of Riga and at the entrance of the Gulf in June 1999. DOM was extracted from Pärnu River water by use of tangential ultrafiltration. Experimental series were enriched with DOM, DOM in combination with nitrate and phosphate, and only with inorganic nutrients. Enrichments were added in ranges of their natural concentrations. Dinophysis acuminata, Protoperidinium brevipes and Gymnodinium spp. were dominant species in the initial dinoflagellate community. During the experiment, the best growth of dinoflagellates was observed in treatments with DOM and DOM in combination with phosphate, mainly due to active growth of D. acuminata (maximum μ=0.8 day−1). Significant uptake of dissolved organic nitrogenous compounds was seen, indicating the importance of heterotrophic nutrition among the phytoplankton species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agusti, S. & J. Kalff, 1989. The influence of growth conditions on the size dependence of maximal algal density and biomass. Limnol. Oceanogr. 34: 1104–1108.

    Google Scholar 

  • Andrushaitis, A., Z. Seisuma, M. Legzdina & E. Lensh, 1995. River load of eutrophying substances and heavy metals into the Gulf of Riga. In Ojaveer, E. (ed.), Ecosystem of the Gulf of Riga between 1920 and 1990. Estonian Academy Publishers, Tallinn. Academia 5: 32–40.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstadt, 1983. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–273.

    Google Scholar 

  • Balode, M., 1994. Long-term changes of summer-autumn phytoplankton communities in the Gulf of Riga. In Guelorget, O. & A. Lefebvre (eds), A Comparative Ecological Approach of Coastal Environments and Paralic Ecosystems, Proceedings of the International Congress of the Baltic See and Mediterranean Sea, 30 May-3 June 1994, Montpellier, France: 96–99.

  • Balode, M. & I. Purina, 1996. Harmful phytoplankton in the Gulf of Riga (the Baltic Sea). In Yasumoto, T., Y. Oshima & Y. Fukuyo (eds), Harmful and Toxic Algal Blooms, Intergovernmental Oceanographic Commission of UNESCO: 69-72.

  • Balode, M., I. Purina, C. Bechemin & S. Y. Maestrini, 1998. Effects of nutrient enrichment on the growth rates and community structure of summer phytoplankton from the Gulf of Riga, Baltic Sea. J. Plankton Res. 20: 2251–2272.

    Google Scholar 

  • Barlewska, J. M. & Z. Witek, 1995. Heterotrophic dinoflagellates in the ecosystem of the Gulf of Gdansk. Mar. Ecol. Prog. Ser. 117: 241–248.

    Google Scholar 

  • Benner, R., B. Biddanda, B. Black & M. McCarthy, 1997. Abundance, size distribution, and stable carbon and nitrogen isotopic compositions of marine organic matter isolated by tangential flow ultra-filtration. Mar. Chem. 57: 243–263.

    Google Scholar 

  • Berg, G. M., P. M. Glibert, N. O. G. Jorgensen, M. Balode & I. Purina, 2001. Variability in inorganic and organic nitrogen uptake associated with riverine input in the Gulf of Riga, Baltic Sea. Estuaries 24: 204–212.

    Google Scholar 

  • Berland, B. R., S. Y. Maestrini, C. Bechemin & C. Legrand, 1994. Photosynthetic capacity of the toxic dinoflagellates Dinophysis cf. acuminata and Dinophysis acuta. La Mer 32: 107–117.

    Google Scholar 

  • Berman, T., C. Bechemin & S. Y. Maestrini, 1999. Release of ammonium and urea from dissolved organic nitrogen in aquatic ecosystems. Aquat. Microb. Ecol. 16: 295–302.

    Google Scholar 

  • Carlsson, P., E. Granéli & A. Z. Segatto, 1999. Cycling of biologically available nitrogen in riverine humic substances between marine bacteria, a heterotrophic nanoflagellate and a photosynthetic dinoflagellate. Aquat. Microb. Ecol. 18: 23–36.

    Google Scholar 

  • Carlsson, P., E. Granéli, P. A. Tester & L. Boni, 1995. Influences of riverine humic substances on bacteria, protozoa, phytoplankton, and copepods in a coastal plankton community. Mar. Ecol. Prog. Ser. 127: 213–221.

    Google Scholar 

  • Carlsson, P., A. Z. Segatto & E. Granéli,1993. Nitrogen bound to humic matter of terrestrial origin-a nitrogen pool for coastal phytoplankton? Mar. Ecol. Prog. Ser. 97: 105–116.

    Google Scholar 

  • Chang, F. H. & M. McClean, 1997. Growth responses of Alexandrium minutum (Dinophyceae) as a function of three different nitrogen sources and irradiance. New Zeal. J. Mar. Freshwat. Res. 31: 1–7.

    Google Scholar 

  • Doblin, M. A., S. I. Blackburn & G. M. Hallegraeff, 1999. Growth and biomass stimulation of the toxic dinoflagellate Gymnodinium catenatum (Graham) by dissolved organic substances. J. Exp. Mar. Biol. Ecol. 236: 33–47.

    Google Scholar 

  • Edler, L., (ed.), 1979. Recommendations on the methods for marine biological studies in the Baltic Sea phytoplankton and chlorophyll. Dept. of Marine Botany, University of Lund, Lund. Publications of the Baltic Marine Biologists 5: 1-38.

    Google Scholar 

  • Gaines, G. & M. Elbrachter, 1987. Heterotrophic nutrition. In Taylor, F. J. (ed.), The Biology of Dinoflagellates. Blackwell, Oxford: 224–268.

    Google Scholar 

  • Garces, E. & M. Maso, 2001. Phytoplankton potential growth rates versus increase in cell numbers: estimation of cell lysis. Mar. Ecol. Prog. Ser. 212: 297–300.

    Google Scholar 

  • Granéli, E., D. M. Anderson, P. Carlsson & S. Y. Maestrini, 1997. Light and dark carbon uptake by Dinophysis species in comparison to other photosynthetic and heterotrophic dinoflagellates. Aquat. Microb. Ecol. 13: 177–186.

    Google Scholar 

  • Granéli, E. & P. Carlsson, 1998. The ecological significance of phagotrophy in photosynthetic flagellates. In Anderson, D. M., A. D. Cembella & G. M. Hallegraeff (eds), Physiological Ecology of Harmful Algal Blooms, Springer-Verlag, Berlin: 539–557.

    Google Scholar 

  • Granéli, E., P. Carlsson & C. Legrand, 1999. The role of C, N and P in dissolved and particulate organic matter as a nutrient source for phytoplankton growth, including toxic species. Aquatic Ecology 33: 17–27.

    Google Scholar 

  • Guo, L., P. H. Santschi & K. W. Warnken, 1995. Dynamics of dissolved organic carbon (DOC) in oceanic environments. Limnol. Oceanogr. 40: 1392–1403.

    Google Scholar 

  • Hansen, P. J., 1991. Quantitative importance and trophic role of heterotrophic dinoflagellates in a coastal pelagial food web. Mar. Ecol. Prog. Ser. 73: 253–261.

    Google Scholar 

  • Havskum, H. & B. Riemann, 1996. Ecological importance of bacterivorous, pigmented flagellates (mixotrophs) in the Bay of Aarhus, Denmark. Mar. Ecol. Prog. Ser. 137: 251–263.

    Google Scholar 

  • Jacobson, D. M. & D. M. Anderson, 1996. Widespread phagocytosis of ciliates and other protists by marine mixotrophic and heterotrophic thecate dinoflagellates. J. Phycol. 32: 279–285.

    Google Scholar 

  • Jeong, H. J. & M. I. Latz, 1994. Growth and grazing rates of the heterotrophic dinoflagellates Protoperidinium spp. on red tide dinoflagellates. Mar. Ecol. Prog. Ser. 106: 173–185.

    Google Scholar 

  • Jespersen, A. M. & K. Christoffersen, 1987. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Archiv für Hidrobiologie 109: 445–454.

    Google Scholar 

  • Koroleff, F., 1976. Determination of urea. In Grasshoff, K., M. Ehrhardt & K. Kremling (eds), Methods of Seawater Analysis. Verlag Chemie, Weinheim: 158–162.

    Google Scholar 

  • Koroleff, F., 1983a. Determination of ammonia. In Grasshoff, K., M. Ehrhardt & K. Kremling (eds), Methods of Seawater Analysis. Verlag Chemie, Weinheim: 150–157.

    Google Scholar 

  • Koroleff, F., 1983b. Determination of phosphorus. In Grasshoff, K., M. Ehrhardt & K. Kremling (eds), Metods of Seawater Analysis. Verlag Chemie, Weinheim: 125–139.

    Google Scholar 

  • Larsen, J. & A. Sournia, 1991. The diversity of heterotrophic dinoflagellates. In Patterson, D. J. & J. Larsen (eds), The Biology of Free-Living Heterotrophic Flagellates. Clarendon Press, Oxford: 313–332.

    Google Scholar 

  • Latz, M. I. & H. J. Jeong, 1996. Effect of red tide dinoflagellate diet and cannibalism on the bioluminiscence of the heterotrophic dinoflagellates Protoperidinium spp. Mar. Ecol. Prog. Ser. 132: 275–285.

    Google Scholar 

  • Legrand, C. & P. Carlsson, 1998. Uptake of high molecular weight dextran by the dinoflagellate Alexandrium catenella. Aquat. Microb. Ecol. 16: 81–86.

    Google Scholar 

  • Mopper, K. & P. Lindroth, 1982. Diel and depth variation in dissolved free amino acids and ammonium in the Baltic Sea determined by shipboard HPLC analysis. Limnol. Oceanogr. 27: 336–347.

    Google Scholar 

  • Pages, J. & F. Gadel, 1990. Dissolved organic matter and UV absorption in a tropical hypersaline estuary. Sc. Tot. Environ. 99: 173–204.

    Google Scholar 

  • Petty, R. L., W. C. Michel, J. P. Snow & K. S. Johnson, 1982. Determination of total primary amines in seawater and plant nectar with flow injection sample processing and fluorescence detection. Anal. Chim. Act. 142: 299–304.

    Google Scholar 

  • Prakash, A., M. A. Rashid, A. Jensen & D. V. Subba Rao, 1973. Influence of humic substances on the growth of marine phytoplankton: diatoms. Limnol. Oceanogr. 18: 516–524.

    Google Scholar 

  • Rahm, L., D. Conley, S. P., F. Wulff & P. Stålnacke, 1996. Time series of nutrient inputs to the Baltic Sea and changing DSi:DIN ratios. Mar. Ecol. Prog. Ser. 130: 221–228.

    Google Scholar 

  • Tang, E. P. Y., 1996. Why do dinoflagellates have lower growth rates? J. Phycol. 32: 80–84.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Methodik. Mitt. Int. Ver. Limnol. 5: 1–38.

    Google Scholar 

  • Wood, E. D., F. A. J. Armstrong & F. A. Richards, 1967. Determination of nitrate in sea water by cadmium copper reduction to nitrite. J. Mar. Biol. Assoc. UK 47: 23–31.

    Google Scholar 

  • Yurkovskis, A., E. Kostrichkina & A. Ikauniece, 1999. Seasonal succession and growth in the plankton communities of the Gulf of Riga in relation to long-term nutrient dynamics. Hydrobiologia 393: 83–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purina, I., Balode, M., Béchemin, C. et al. Influence of dissolved organic matter from terrestrial origin on the changes of dinoflagellate species composition in the Gulf of Riga, Baltic Sea. Hydrobiologia 514, 127–137 (2004). https://doi.org/10.1023/B:hydr.0000018213.38191.f9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:hydr.0000018213.38191.f9

Navigation