Ukrainian Mathematical Journal

, Volume 56, Issue 3, pp 410–419 | Cite as

On the Optimal Coefficient of Efficiency of a Semi-Markov System in the Scheme of Phase Lumping

  • N. G. Vovkodav
  • L. N. Shlepakov


By using methods of the theory of semi-Markov processes, we analyze the problem of detecting signals in a multichannel system. We construct an optimal strategy for the motion of a search device in a multichannel system and obtain the corresponding estimate for the search efficiency.


Optimal Strategy Search Efficiency Optimal Coefficient Multichannel System Search Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Hellman, Introduction to the Theory of Optimal Search[Russian translation], Nauka, Moscow (1985).Google Scholar
  2. 2.
    L. N. Shlepakov and N. G. Vovkodav, Selective Search of Signals in Multichannel Communication Lines[in Russian], Preprint No. 94.23, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1995).Google Scholar
  3. 3.
    N. G. Vovkodav and L. N. Shlepakov, “Optimal search with accompaniment of detected sought signals,” Probl. Upravl.Informat.,No. 4, 72–80 (2000).Google Scholar
  4. 4.
    V. S. Korolyuk and A. F. Turbin, Mathematical Foundations of the State Lumping of Large Systems[in Russian], Naukova Dumka, Kiev (1978).Google Scholar
  5. 5.
    V. S. Korolyuk and A. V. Svishchuk, Evolutionary Stochastic Systems. Algorithms for Averaging and Diffusion Approximation[in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (2000).Google Scholar
  6. 6.
    D. R. Cox and W. L. Smith, Renewal Theory[Russian translation], Sovetskoe Radio, Moscow (1967).Google Scholar
  7. 7.
    V. S. Korolyuk, N. I. Portenko, A. V. Skorokhod, and A. F. Turbin, Handbook of Probability Theory and Mathematical Statistics[in Russian], Nauka, Moscow (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • N. G. Vovkodav
    • 1
  • L. N. Shlepakov
    • 1
  1. 1.Institute of MathematicsUkrainian Academy of SciencesKiev

Personalised recommendations