Ukrainian Mathematical Journal

, Volume 56, Issue 1, pp 86–95 | Cite as

On the Approximation by Modified Interpolation Polynomials in Spaces Lp

  • A. B. Metelichenko


We consider certain modified interpolation polynomials for functions from the space Lp[0, 2π], 1 ≤ p ≤ ∞. An estimate for the rate of approximation of an original function f by these polynomials in terms of its modulus of continuity is obtained. We establish that these polynomials converge almost everywhere to f.


Original Function Interpolation Polynomial Modify Interpolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Privalov, Theory of Interpolation of Functions [in Russian], Saratov University, Saratov (1990).Google Scholar
  2. 2.
    S. N. Bernshtein, “On trigonometric interpolation by the least-squares method,” Dokl. Akad. Nauk SSSR, 4, 1–18 (1934).Google Scholar
  3. 3.
    I. P. Natanson, Constructive Theory of Functions [in Russian], Gostekhizdat, Moscow (1949).Google Scholar
  4. 4.
    J. Marcinkiewicz, “Quelques remarques sur l'interpolation,” Acta Litt. Sci. Szeged, 8, 127–130 (1937).Google Scholar
  5. 5.
    A. Zygmund, Trigonometric Series [Russian translation], Mir, Moscow (1965).Google Scholar
  6. 6.
    V. Kh. Khristov, “On the convergence of interpolation polynomials of periodic functions in the mean,” Bolg. Mat. Stud., 5, 143–22 (1983).Google Scholar
  7. 7.
    L. V. Kantorovich, “On some expansions in polynomials in the Bernshtein form. I,” Dokl. Akad. Nauk SSSR, 21, 563–568 (1930).Google Scholar
  8. 8.
    S. M. Lozinskii, “On interpolation,” Mat. Sb., 50, No. 1, 57–68 (1940).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • A. B. Metelichenko
    • 1
  1. 1.Odessa UniversityOdessa

Personalised recommendations