Ukrainian Mathematical Journal

, Volume 55, Issue 9, pp 1445–1456 | Cite as

Almost-Everywhere Convergence and (o)-Convergence in Rings of Measurable Operators Associated with a Finite von Neumann Algebra

  • M. A. Muratov
  • V. I. Chilin


We study the relationship between (o)-convergence and almost-everywhere convergence in the Hermite part of the ring of unbounded measurable operators associated with a finite von Neumann algebra. In particular, we prove a theorem according to which (o)-convergence and almost-everywhere convergence are equivalent if and only if the von Neumann algebra is of the type I.


Operator Associate Hermite Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. E. Segal, “A noncommutative extension of abstract integration,” Ann. Math., No. 57, 401-457 (1953).Google Scholar
  2. 2.
    W. E. Stinespring, “Integration theorems for gages and duality for unimodular groups,” Trans. Amer. Math. Soc., 90, 15-56 (1959).Google Scholar
  3. 3.
    S. Sankaran, “Stochastic convergence for operators,” Quart. J. Math., 2, No. 15, 97-102 (1964).Google Scholar
  4. 4.
    A. R. Padmanabhan, “Convergence in measure and related results in finite rings of operators,” Trans. Amer. Math. Soc., No. 128, 359-388 (1967).Google Scholar
  5. 5.
    F. J. Yeadon, “Convergence of measurable operators,” Proc. Cambridge Phil. Soc., No. 74, 257-268 (1973).Google Scholar
  6. 6.
    F. J. Yeadon, “Noncommutative L P-spaces,” Math. Proc. Cambridge Phil. Soc., No. 77, 91-102 (1975).Google Scholar
  7. 7.
    A. Paszkiewicz, “Convergence almost everywhere in W *-algebras,” Lect. Notes Math., 1136, 420-427 (1985).Google Scholar
  8. 8.
    A. Paszkiewicz, “Convergence in W *-algebras,” J. Fuct. Anal., 69, 143-154 (1986).Google Scholar
  9. 9.
    M. A. Muratov, “Convergence almost everywhere and in measure in a ring of measurable operators,” in: Mathematical Analysis and Geometry [in Russian], Tashkent University, Tashkent (1980), pp. 47-52.Google Scholar
  10. 10.
    M. A. Muratov, “Some problems of the convergence of sequences of unbounded operators associated with a finite von Neumann algebra,” in: Proceedings of the Ukrainian Mathematical Congress [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (2002), pp. 161-175.Google Scholar
  11. 11.
    M. A. Muratov, “Order properties of convergent sequences of unbounded measurable operators affiliated to a finite von Neumann algebra,” Meth. Funct. Anal. Topol., 8, No. 3, 50-60 (2002).Google Scholar
  12. 12.
    V. I. Chilin, “Topological O *-algebras,” Funkts. Anal. Prilozhen., 14, Issue 1, 87-99 (1980).Google Scholar
  13. 13.
    B. Z. Vulikh, Introduction to the Theory of Semiordered Spaces [in Russian], Fizmatgiz, Moscow (1961).Google Scholar
  14. 14.
    M. Takesaki, Theory of Operator Algebras. I, Springer, New York (1979).Google Scholar
  15. 15.
    S. Stratila and L. Zsido, Lectures on von Neumann Algebras, England Abacus Press (1975).Google Scholar
  16. 16.
    T. Fack and H. Kosaki, “Generalized s-numbers of ?-measurable operators,” Pacif. J. Math., 123, 269-300 (1986).Google Scholar
  17. 17.
    T. A. Sarymsakov, Sh. A. Ayupov, D. Khadzhiev, and V. I. Chilin, Ordered Algebras [in Russian], Fan, Tashkent (1983).Google Scholar
  18. 18.
    E. Nelson, “Notes on noncommutative integration,” J. Funct. Anal., No. 15, 103-116 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • M. A. Muratov
    • 1
  • V. I. Chilin
    • 2
  1. 1.Tavria National UniversitySimferopol
  2. 2.Uzbekistan National UniversityTashkentUzbekistan

Personalised recommendations