Advertisement

Ukrainian Mathematical Journal

, Volume 55, Issue 7, pp 1181–1188 | Cite as

Perturbed Parabolic Equation on a Riemannian Manifold

  • V. G. Bondarenko
Article

Abstract

We construct a fundamental solution of an equation with perturbed diffusion operator on a manifold of nonnegative curvature.

Keywords

Riemannian Manifold Parabolic Equation Fundamental Solution Diffusion Operator Nonnegative Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    V. G. Bondarenko, “Estimates for the heat kernel on a manifold of nonpositive curvature,” Ukr. Mat. Zh., 50, No. 8, 1129–1135 (1998).Google Scholar
  2. 2.
    V. G. Bondarenko, “Method of parametrix for a parabolic equation on a Riemannian manifold,” Ukr. Mat. Zh., 51, No. 11, 1443–1448 (1999).Google Scholar
  3. 3.
    V. G. Bondarenko, “Covariant derivatives of Jacobi fields on a manifold of nonpositive curvature,” Ukr. Mat. Zh., 50, No. 6, 755–764 (1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • V. G. Bondarenko
    • 1
  1. 1.Kiev Polytechnic InstituteKiev

Personalised recommendations