Transport in Porous Media

, Volume 55, Issue 1, pp 91–102 | Cite as

Numerical Calculation of Mass Transfer from Elliptical Pools in Uniform Flow Using the Boundary Element Method

  • M. M. Fyrillas
  • E. J. Kontoghiorghes


The three-dimensional problem of advection-dispersion associated with an elliptical non-aqueous-phase liquid (NAPL) pool is addressed using the boundary element method. The boundary condition on the plane of the pool is such that over the pool the concentration is equal to the saturation concentration while a no flux boundary condition is imposed in the region not covered by the pool. The numerical results are verified by asymptotic analytical solutions obtained in the limits of diffusion-dominated and convection-dominated mass transport. For cases of practical interest an empirical expression is obtained for the Sherwood number that matches the numerical results over a wide range of the relevant parameters. Comparison with experimental results suggests that the corresponding numerical results predict a higher overall mass transfer coefficient.

NAPL pools contaminant transport boundary element method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abriola, L. M. and Pinder, G. F.: 1985, A multiphase approach to the modeling of porous media contamination by organic compounds. 1. Equation development, Water Resour. Res. 21, 11–18.Google Scholar
  2. Bear, J.: 1972, Dynamics of Fluids in Porous Media, Dover, New York.Google Scholar
  3. Bear, J. and Verruijt, A.: 1987, Modeling Groundwater Flow and Pollution, Reidel, Dordrecht.Google Scholar
  4. Belward, J. A.: 1969, The solution of an integral equation of the first kind on a finite interval, Quart. Appl. Math. 27, 313–321.Google Scholar
  5. Belward, J. A.: 1972, Solutions of some Fredholm integral equations using fractional integration, with an application to a forced convection problem, J. Appl. Math. Phys. 23, 901–917.Google Scholar
  6. Belward, J. A.: 1974, On the relationship of some Fredholm integral equations of the first kind to a family of boundary value problems, J. Math. Quart. Anal. Appl. 48, 184–199.Google Scholar
  7. Bender, M. A. and Stone, H. A.: 1993, An integral equation approach to the study of the steady state current at surface microelectrodes, J. Electroanal. Chem. 351, 29–55.Google Scholar
  8. Borden, R. C. and Kao, C. M.: 1992, Evaluation of groundwater extraction for remediation of petroleum-contaminated acquifers, Water Environ. Res. 64, 28–36.Google Scholar
  9. Borden, R. C. and Piwoni, M. D.: 1992, Hydrocarbon dissolution and transport–a comparison of equilibrium and kinetic models, J. Contam. Hydrol. 10, 309–323.Google Scholar
  10. Bradford, S. A., Abriola, L. M. and Rathfender, K.: 1998, Flow and entrapment of dense nonaqueous phase liquids in physically and chemically heterogeneous aquifer formations, Adv. Water Resour. 22, 117–132.Google Scholar
  11. Chrysikopoulos, C. V., Voudrias, E. A. and Fyrillas, M. M.: 1994, Modeling of contaminant transport resulting from dissolution of nonaqueous phase liquid pools in saturated porous media, Transport in Porous Media 16, 125–145.Google Scholar
  12. Chrysikopoulos, C. V., Hsuan, P.-Y. and Fyrillas, M. M.: 2002, Bootstrap estimation of the mass transfer coefficient of a dissolving nonaqueous phase liquid pool in porous media, Water Resour. Res. 38(3), 1026.Google Scholar
  13. Chrysikopoulos, C. V., Hsuan, P.-Y., Fyrillas, M. M. and Lee, K. Y.: 2003, Mass transfer coefficient and concentration boundary layer thickness for a dissolving NAPL pool in porous media, J. Haz. Mat. B97, 245–255.Google Scholar
  14. Fyrillas, M. M.: 2000, Advection–dispersion mass transport associated with a non-aqueous-phase liquid pool, J. Fluid Mech. 413, 49–63.Google Scholar
  15. Holman, H.-Y. N. and Javandel, I.: 1996, Evaluation of transient dissolution of slightly water-soluble compounds from a light nonaqueous phase liquid pool, Water Resour. Res. 32, 915–923.Google Scholar
  16. Hunt, J. R., Sitar, N. and Udell, K. S.: 1988, Nonaqueous phase liquid transport and cleanup. 1. Analysis of mechanisms, Water Resour. Res. 24, 1247–1258.Google Scholar
  17. Incropera, F. P. and DeWitt, P.: 1990, Fundamentals of Heat and Mass Transfer, Wiley.Google Scholar
  18. Landau, L. D. and Lifshitz, E. M.: 1960, Electrodynamics of Continuous Media, Pergamon Press, New York.Google Scholar
  19. Lee, K. Y.: 1999, Dissolution of nonaqueous phase liquid pools in saturated porous media. PhD Dissertation, University of California, Irvine.Google Scholar
  20. Lee, K. Y. and Chrysikopoulos, C. V.: 2002, Dissolution of a well-defined trichloroethylene pool in saturated porous media: Experimental results and model simulations, Water Res. 36, 3911–3918.Google Scholar
  21. Leij, F. J., Toride, N. and van Genuchten, M. Th.: 1993, Analytical solutions for non-equilibrium solute transport in three-dimensional porous media, J. Hydrol. 151, 193–228.Google Scholar
  22. Lévêque, M. A.: 1928, Transmission de chaleur par convection, Annls Mines 13, 283.Google Scholar
  23. Phillips, G. P.: 1990, Heat and mass transfer from a film into steady shear flow, Q. J. Mech. Appl. Math. 43, 135–159.Google Scholar
  24. Pozrikidis, C.: 1992, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, Cambridge.Google Scholar
  25. Pozrikidis, C.: 1997, Introduction to Theoretical and Computational Fluid Dynamics, Oxford University Press, Oxford.Google Scholar
  26. Prakash, A.: 1984, Ground-water contamination due to transient sources of pollution, J. Hydraul. Eng. 110, 1642–1658.Google Scholar
  27. Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vettering, W. T.: 1989, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge.Google Scholar
  28. Seagren, E. A., Rittmann, B. E. and Valocchi, A. J.: 1994, Quantitative evaluation of the enhancement of NAPL-pool dissolution by flushing and biodegradation, Environ. Sci. Technol. 28, 833–839.Google Scholar
  29. Stone, H. A.: 1989, Heat/mass transfer from surface films to shear flows at arbitrary Peclet numbers, Phys. Fluids A 1, 1112–1122.Google Scholar
  30. Toride, N., Leij, F. J. and van Genuchten, M. Th.: 1993, A comprehensive set of analytical solutions for nonequilibrium solute transport with first-order decay and zero-order production, Water Resour. Res. 29, 2167–2182.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • M. M. Fyrillas
    • 1
  • E. J. Kontoghiorghes
    • 2
  1. 1.IRISA-INRIARennesFrance
  2. 2.Institut d’InformatiqueUniversité de NeuchâtelSwitzerland

Personalised recommendations