Advertisement

Transport in Porous Media

, Volume 55, Issue 1, pp 1–20 | Cite as

Investigation of the Geometrical Dispersion Regime in a Single Fracture Using Positron Emission Projection Imaging

  • D. Loggia
  • P. Gouze
  • R. Greswell
  • D. J. Parker
Article

Abstract

The transport properties of a natural fracture crossing a limestone block of 36 cm × 26 cm × 60 cm is studied using positron emission projection imaging. This non-invasive technique allows to measure the spatial distribution of the activity of a radioactive solution (here irradiated-copper-EDTA solution) within the fracture. The fracture aperture is measured from the spatial distribution of the activity as the fracture is completely filled with the tracer. The experiment consists in injecting the tracer at a constant flow rate in the plane of the fracture filled with an identical non-radioactive solution. Every 10 min, a two-dimensional grey scale image of the concentration field is recorded. The heterogeneity of the tracer distribution increases with time in relation with the spatial heterogeneity of the aperture field, and favours only slightly the region of larger aperture. The correlation length of the aperture distribution is larger than the correlation length of the concentration distribution of the tracer within the sample. Consequently, the concentration distribution cannot be modelled using a classical advection–dispersion equation; the mixing process has not reached a stationary Fickian dispersion regime in the finite size domain of the experiment. Nevertheless, the transversally averaged concentration profiles \(\overline c \left( x \right)\) evaluated along the flow direction x rescale adequately with an advective variable \({x \mathord{\left/ {\vphantom {x {\overline U t}}} \right. \kern-\nulldelimiterspace} {\overline U t}} \), where \({\overline U }\) is the mean velocity and t the time. This result is explained in the context of the geometrical dispersion regime where the mixing dispersion zone grows proportionally with time. Different approaches are proposed to characterise this anomalous dispersion regime.

dispersion fracture positron emission tomography anomalous dispersion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelin, H., Birgersson, L., Widen, H., Agren, T., Moreno, L. and Neretnieks, I.: 1994, Channeling experiments in crystalline fractured rocks, J. Cont. Hydrol. 15, 129–158.Google Scholar
  2. Adler, P. M. and Thovert, J.-F.: 1999, Fractures and Fracture Networks, Kluwer Academic Publishers, Dordrecht.Google Scholar
  3. Aris, R.: 1956, Dispersion of solute in a fluid flowing through a tube, Proc. R. Soc. Lond. Ser. A 235, 66–67.Google Scholar
  4. Bacri, J.-C., Rakotomalala, N. and Salin, D.: 1990, Anomalous dispersion and finite-size effects in hydrodynamic dispersion, Phys. Fluids A 2(5), 674–680.Google Scholar
  5. Bear, J., Chin-Fu, T. and De Marsily, G.: 1993, Flow and Contaminant Transport in Fractured Rock, Academic Press, New York.Google Scholar
  6. Berkowitz, B. and Scher, H.: 1995, On characterization of anomalous transport in porous and fractured media, Water Resour. Res. 31, 1461–1466.Google Scholar
  7. Berkowitz, B., Scher, H. and Silliman, S. E.: 2000a, Anomalous transport in laboratory scale, heterogeneous porous media, Water Resour. Res. 36(1), 149–158.Google Scholar
  8. Berkowitz, B., Scher, H. and Silliman, S. E.: 2000b, Anomalous transport in laboratory scale, heterogeneous porous media, Water Resour. Res. 36(5), 1371.Google Scholar
  9. Berkowitz, B., Kosakowski, G., Margolin, G. and Scher, H.: 2001, Applications of continuous time random walk theory to tracer test measurements in fractured and heterogeneous porous media, Groundwater 39(4), 593–604.Google Scholar
  10. Bernabé, Y. and Bruderer, C.: 1998, Effect of the variance of pore size distribution on the transport properties of heterogeneous networks, Geophys. Res. 103(1), 513–525.Google Scholar
  11. Brown, S., Caprihan, A., Hardy, R.: 1998, Experimental observation of fluid flow channels in a single fracture, Geophys. Res. 103, 5125–5132.Google Scholar
  12. Bruderer, C. and Bernabé, Y.: 2001, Network modeling of dispersion: transition from Taylor dispersion in homogeneous networks to mechanical dispersion in very heterogeneous ones, Water Resour. Res. 37(4), 897–908.Google Scholar
  13. Dagan, G.: 1986, Statistical theory of groundwater flow and transport: pore to laboratory, laboratory to formation, and formation to regional scale, Water Resour. Res. 22(9), 120S–134S.Google Scholar
  14. Degueldre, C., Pleneirt, H., Maguire, P., Lehman, E., Missimer, J., Hammer, J., Leenders, K., Böck, H. and Townsend, D.: 1996, Porosity and pathway determination in crystalline rock by positron emission projection imaging and neutron radiography, Earth Planet. Sci. Lett. 140, 213–225.Google Scholar
  15. Detwiler, R. L., Rajaram, H. and Glass, R. J.: 2000, Solute transport in variable-aperture fractures: an investigation of the relative importance of Taylor dispersion and macrodispersion, Water Resour. Res. 36(7), 1611–1625.Google Scholar
  16. Garabedian, S. P., LeBlanc, D. R., Gelhar, L.W. and Celia, M. A.: 1991, Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts. 2. Analysis of spatial moments for a non-reactive tracer, Water Resour. Res. 27(5), 911–924.Google Scholar
  17. Gelhar, L.W.: 1987, Applications of stochastic models to solute transport in fractured rocks, Swedish Nuclear Fuel and Waste Management Company, Stockholm, Sweden, SKB Technical Report 87–105.Google Scholar
  18. Gelhar, L. W. and Axness, C. L.: 1983, Three-dimensional stochastic analysis of macrodispersion, Water Resour. Res. 19(1), 161–180.Google Scholar
  19. Gelhar, L.W., Welty, C. and Rehfeldt, K. R.: 1992, A critical review of data on field-scale dispersion in aquifers, Water Resour. Res. 28(7), 1955–1974.Google Scholar
  20. Greswell, R., Yoshida, K., Tellam, J. H. and Lloyd, J. W.: 1998a, The micro-scale hydrogeological properties of the Lincolnshire limestone, UK, Q. J. Eng. Geol. 31, 181–197.Google Scholar
  21. Greswell, R., Tellam, J. H., Lloyd, J. W. and Parker, D. J.: 1998b, Positron emission projection imaging studies of solute movement through rock, Int. Assoc. Hydrol. Ann. Meet. 28, 561–566.Google Scholar
  22. Gouze, P., Noiriel, C., Bruderer, C., Loggia, D. and Leprovost, R.: 2003, X-ray tomography characterization of fracture surfaces during dissolution process, Geophys. Res. Lett. 30(5), 1267, doi: 10.1029/2002GL016755.Google Scholar
  23. Hawkesworth, M. R. and Parker, D. J.: 1991, Nonmedical applications of a positron camera, Nucl. Instrum. Meth. Phys. Res. A 310, 423–434.Google Scholar
  24. Ippolito, I., Daccord, G., Hinch, E. J. and Hulin, J. P.: 1994, Echo tracer dispersion in model fractures with rectangular geometry, J. Contam. Hydrol. 16, 87–108.Google Scholar
  25. Isaaks, E. H. and Srivastava, R. M.: 1989, Applied Geostatistics, Oxford University Press, Oxford.Google Scholar
  26. Jefrey, A.: 1976, Quasilinear Hyperbolic Systems and Waves, Pitman, London.Google Scholar
  27. Johns, R. A. and Roberts, P. V.: 1991, A solute transport model for channelized flow in a fracture, Water Resour. Res. 27(8), 1797–1808.Google Scholar
  28. Keller, A. A., Roberts, P. V. and Blunt, M. J.: 1999, Effect of fracture aperture variations on the dispersion of contaminants, Water Resour. Res. 35(1), 55–63.Google Scholar
  29. Kumar, A. T. A., Majors, P. D. and Rossen, W. R.: 1995, Measurement of aperture and multiphase flow using NMR imaging, Soc. Petrol. Eng. Ann., 22–25.Google Scholar
  30. Lajeunesse, E., Martin, J., Rakotomalala, N. and Salin, D.: 1997, 3D instability of miscible displacements in a Hele-Shaw cell, Phys. Rev. Lett. 79(26), 5254–5257.Google Scholar
  31. Lenormand, R. and Wang, B.: 1995, A stream tube model for miscible fluid flow: macrodispersion in porous media with long range correlation, Transport in Porous Media 18, 263–282, and references therein.Google Scholar
  32. Levy, M. and Berkowitz, B.: 2002, Measurement and analysis of non-Fickian dispersion in heterogeneous porous media, J. Contam. Hydrol. (in press).Google Scholar
  33. Margolin, G., Berkowitz, B. and Scher, H.: 1998, Structure, flow, and generalized conductivity scaling in fracture networks, Water Resour. Res. 34(9), 2103–2121.Google Scholar
  34. Moreno, L. and Neretnieks, I.: 1993, Fluid flow and solute transport in a network of channels, J. Contam. Hydrol. 14, 163–192.Google Scholar
  35. Moreno, L. and Tsang, C.: 1994, Flow channeling in strongly heterogeneous porous media: a numerical study, Water Resour. Res. 30(5), 1421–1430.Google Scholar
  36. Neuman, S. P.: 1995, On advective transport in fractal permeability fields, Water Resour. Res. 31, 1455–1460.Google Scholar
  37. Nicholl, M. J. and Detwiler, R. L.: 2001, Simulation of flow and transport in a single fracture: macroscopic effects of underestimating local head loss, Geophys. Res. Lett. 28(23), 4355–4358.Google Scholar
  38. Ogilvie, S. R., Orribo, J. M. and Glover, P. W. J.: 2001, The influence of deformation bands upon fluid flow using profile permeametry and positron emission tomography, Geophys. Res. Lett. 28(1), 61–64.Google Scholar
  39. Plouraboué, F., Kurowski, P., Hulin, J. P., Roux, S. and Schmittbuhl, J.: 1995, Aperture of rough cracks, Phys. Rev. E 51(3), 1675–1685.Google Scholar
  40. Plouraboué, F., Hulin, J. P., Roux, S. and Koplik, J.: 1998, Numerical study of geometrical dispersion in self-affine rough fractures, Phys. Rev. E 58(3), 3334–3346.Google Scholar
  41. Roux, S., Plouraboué, F. and Hulin, J.-P.: 1998, Tracer dispersion in rough open cracks, Transport in Porous Media 32, 97–116.Google Scholar
  42. Silliman, S. E.: 1989, An interpretation of the difference between aperture estimates derived from hydraulic and tracer tests in a single fracture, Water Resour. Res. 25(10), 2275–2283.Google Scholar
  43. Sternberg, S. P. K., Cushman, J. H. and Greenkorn, R. A.: 1996, Laboratory observation of non-local dispersion, Transport in Porous Media 23, 135–151.Google Scholar
  44. Taylor, G.: 1953, Dispersion of soluble matter flowing slowly through a tube, Proc. R. Soc. Lond. Ser. A 219, 186–203.Google Scholar
  45. Thompson, M. E.: 1991, Numerical simulations of solute transport in rough fractures, J. Geophys. Res. 96(3), 4157–4166.Google Scholar
  46. Thompson, M. E. and Brown, S. R.: 1991, The effect of anisotropic surface roughness on flow and transport in fractures, J. Geophys. Res. 96(13), 21923–21932.Google Scholar
  47. Tsang, Y. W. and Tsang, C. F.: 1989, Flow channelling in a single fracture as a two-dimensional strongly heterogeneous permeable medium, Water Resour. Res. 25(9), 2076–2080.Google Scholar
  48. Witham, G. B.: 1974, Linear and Nonlinear Waves, Wiley Interscience, New York.Google Scholar
  49. Witherspoon, P. A., Wang, J. S. Y., Iwai, K. and Gale, J. E.: 1980, Validity of cubic law for fluid flow in a deformable rock fracture, Water Resour. Res. 16(6), 1016–1024.Google Scholar
  50. Yang, Z. and Yortsos, Y. C.: 1997, Asymptotic solutions of miscible displacements in geometries of large aspect ratio, Phys. Fluids 9(2), 286–298.Google Scholar
  51. Zimmerman, R.W. and Bodvarsson, G. S.: 1996, Hydraulic conductivity of rock fractures, Transport in Porous Media 23, 1–30.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • D. Loggia
    • 1
  • P. Gouze
    • 1
  • R. Greswell
    • 2
  • D. J. Parker
    • 3
  1. 1.Laboratoire Tectonophysique (UMR 5568)Université Montpellier 2, CC MSEMontpellier Cedex 5France
  2. 2.School of Earth SciencesThe University of BirminghamEdgbaston, BirminghamUK
  3. 3.School of Physics and AstronomyThe University of BirminghamEdgbaston, BirminghamUK

Personalised recommendations