Advertisement

Plant Cell, Tissue and Organ Culture

, Volume 79, Issue 1, pp 1–18 | Cite as

Ornamental Chrysanthemums: Improvement by Biotechnology

  • Jaime A. Teixeira da Silva
Article

Abstract

The in vitro tissue culture and micropropagation of chrysanthemums, important floricultural (cut-flower) and ornamental (pot and garden) plants, have been well studied. An increase in genetic transformation studies aimed at improving aesthetic and growth characteristics of the plants has been hampered by low transformation efficiencies and genotype dependence of protocols. As a result chrysanthemum regeneration studies have once again emerged as an essential complement of transformation studies. This review highlights the impact that biotechnology has had on the improvement of chrysanthemum in vitro cell, tissue and organ culture, micropropagation and transformation.

Dendranthema grandiflora micropropagation organogenesis thin cell layer transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahloowalia BS & Maluszynski M (2001) Induced mutations -- a new paradigm in plant breeding. Euphytica 118: 167–173Google Scholar
  2. Ahmed HA (1986) In vitro regeneration and propagation of meristem apices of chrysanthemum. Kerteszetiegyetem Kozlemenyei 50: 199–214Google Scholar
  3. Ahmed HA & Andrea M (1987) Effect of Chrysanthemum multiplication by meristem-tip culture. Acta Hort. 212: 98–99Google Scholar
  4. Amagasa K & Kameya T (1989) Plant regeneration and callus formation from Chrysanthemum morifolium, C. coronarium and Lactuca sativa protoplasts. J. Jap. Soc. Hort. Sci. 57: 620–625Google Scholar
  5. Anderson NO, Ascher PD, Widmer RE & Luby JJ (1990) Rapid regeneration cycling of chrysanthemum using laboratory seed development and embryo rescue techniques. J. Am. Soc. Hort. Sci. 115: 329–336Google Scholar
  6. Annadana S, Rademaker W, Ramanna M, Udayakumar M & de Jong J (2000) Response of stem explants to screening and explant source as a basis for methodological advancing of regeneration protocols for chrysanthemum. Plant Cell Tiss. Org. Cult. 62: 47–55Google Scholar
  7. Annadana S, Mlynárová L, Udayakumar M, de Jong J & Nap JP (2001) The potato Lhca3.St.1 promoter confers high and stable transgene expression in chrysanthemum, in contrast to CaMV-based promoters. Mol. Breed. 8: 335–344Google Scholar
  8. Bajaj YPS, Sidhu MMS & Gill APS (1992) Micropropagation of Chrysanthemum. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, Vol 20: High-Tech Micropropagation IV (pp. 69–80). Springer-Verlag, Berlin, GermanyGoogle Scholar
  9. Bannier LJ & Steponkus PL (1976) Cold acclimation of chrysanthemum callus cultures. J. Am. Soc. Hort. Sci. 101: 409–412Google Scholar
  10. Benetka V & Pavingerová D (1995) Phenotypic differences in transgenic plants of chrysanthemum. Plant Breed. 114: 169–173Google Scholar
  11. Ben-Jaacov J & Langhans RW (1972) Rapid multiplication of Chrysanthemum plants by stem tip proliferation. HortScience 7: 289–290Google Scholar
  12. Bhattacharya P, Dey S, Das N & Bhattacharya BC (1990) Rapid mass propagation of Chrysanthemum morifolium by callus derived from stem and leaf explants. Plant Cell Rep. 9: 439–442Google Scholar
  13. Bhattacharya P, Dey S & Bhattacharya BC (1994) Use of low-cost gelling agents and support matrices for industrial scale plant tissue culture. Plant Cell Tiss. Org. Cult. 37: 15–23Google Scholar
  14. Boase MR, Miller R & Deroles SC (1997) Chrysanthemum systematics, genetics, and breeding. In: Janick J (ed) Plant Breeding Reviews, Vol 14 (pp. 321–361). John Wiley and Sons, New YorkGoogle Scholar
  15. Boase MR, Bradley JM & Borst NK (1998a) Genetic transformation mediated by Agrobacterium tumefaciens of florists' chrysanthemum (Dendranthema ×grandiflorum) cultivar ‘Peach Margaret’. In Vitro Cell. Dev. Biol.-Plant 34: 46–51Google Scholar
  16. Boase MR, Borst NK & Bradley JM (1998b) Chrysanthemum cultivar-Agrobacterium interactions revealed by GUS expression time course experiments. Sci. Hort. 77: 89–107Google Scholar
  17. Broertjies C, Roest S & Bokelmann GS (1976) Mutation breeding of Chrysanthemum morifolium Ram. using in vivo and in vitro adventitious bud techniques. Euphytica 25: 11–19Google Scholar
  18. Bush R, Earle ED & Langhans RW (1976) Plantlets from petal segments, petal epidermis and shoot tips of the periclinal chimera, Chrysanthemum morifolium ‘Indianapolis’ Am. J. Bot. 63: 729–737Google Scholar
  19. Chakrabarty D, Mandal AKA & Datta SK (1999) Management of chimera through direct shoot regeneration from florets of chrysanthemum (Dendranthema grandiflora Ramat.). J. Hort. Sci. Biotechnol. 74: 293–296Google Scholar
  20. Chakrabarty D, Mandal AKA & Datta SK (2000) SEM and light microscopic studies on direct shoot regeneration from ray florets of Chrysanthemum. Israel J. Plant Sci. 48: 105–107Google Scholar
  21. Corneanu GC & Corneanu M (1992) Preliminary studies about human bio-energy effect on in vitro vegetal cultures. Rev. Roum. Biol. 37: 113–117Google Scholar
  22. Courtney-Gutterson N, Otten A, Firoozabady E, Akerboom M, Lemieux C, Nicholas J, Morgan A & Robinson KEP (1993) Production of genetically engineered color-modified chrysanthemum plants carrying a homologous chalcone synthase gene and their field performance. Acta Hort. 336: 57–62Google Scholar
  23. Courtney-Gutterson N, Napoli C, Lemieux C, Morgan A, Firoozabady E & Robinson KEP (1994) Modification of lower color in florist's chrysanthemum: production of a white-flowering variety through molecular genetics. BioTechnology 12: 268–271PubMedGoogle Scholar
  24. CPRO-DLO (1997) Ornamental Crops. Annual Report (p. 13).Google Scholar
  25. Datta SK, Chakrabarty D, Saxena M, Mandal AKA & Biswas AK (2001a) Direct shoot regeneration from florets of chrysanthemum cultivars. Ind. J. Genet. 61: 373–376Google Scholar
  26. Datta SK, Mandal AKA & Saxena M (2001b) Direct organogenesis from ray and disk florets of a newly evolved chlorophyll variegated chrysanthemum (Chrysanthemum morifolium). Ind. J. Agric. Sci. 71: 655–657Google Scholar
  27. de Argollo MD, Kirszenzaft SSL & Jesu CO (1998) Influence of nitrogen sources on in vitro morphogenesis of axillary shoots in stem explants of Chrysanthemum morifolium Ramat. Rev. Bras. Bot. 21: 141–147Google Scholar
  28. de Jong J & Custers JBM (1986) Induced changes in growth and flowering of chrysanthemum after irradiation and in vitro culture of pedicels and petal epidermis. Euphytica 35: 137–148Google Scholar
  29. de Jong J, van Wordragen MF & Rademaker W (1990) Early transformation events in Dendranthema grandiflora. In: Proceedings of EUCARPIA (Section Ornamentals): Integration of In Vitro Techniques in Ornamental Plant Breeding (pp. 156–161). WageningenGoogle Scholar
  30. de Jong J, Rademaker W & van Wordragen MF (1993) Restoring adventitious shoot formation on chrysanthemum leaf explants following cocultivation with Agrobacterium tumefaciens.Plant Cell Tiss. Org. Cult. 32: 263–270Google Scholar
  31. de Jong J, Mertens MJ & Rademaker W (1994) Stable expression of the GUS reporter gene in chrysanthemum depends on binary plasmid T-DNA. Plant Cell Rep. 14: 59–64Google Scholar
  32. de Jong J, Rademaker W & Ohishi K (1995) Agrobacterium-mediated transformation of chrysanthemum. Plant Tiss. Cult. Biotechnol. 1: 38–42Google Scholar
  33. de Oliveira PD, Moacir P & Renato P (1995) The effect of different concentrations of growth regulators on in vitro shoot proliferation of chrysanthemum (Dendranthema grandiflora Tzvelev). Ciênc. Prát. 19: 397–408Google Scholar
  34. de Oliveira PD, Pasqual M & Paiva R (1996) Different concentrations of the MS medium, nitrogen and sucrose on micropropagation of chrysanthemum. Bragantia 55: 9–18Google Scholar
  35. Dolgov SV, Mityshkina TU, Rukavtsova EB & Buryanov YI (1995) Production of transgenic plants of Chrysanthemum morifolium. Ramat. with the gene of Bac. thuringiensis δ-endotoxin. Acta Hort. 432: 114–118Google Scholar
  36. Dolgov SV, Mitiouchkina TY & Skryabin KG (1997) Agrobacterial transformation of chrysanthemum. Acta Hort. 447: 329–333Google Scholar
  37. Dwivedi AK, Banerji BK, Chakrabarty D, Mandal AKA & Datta SK (2000) Gamma ray induced new flower colour chimera and its management through tissue culture. Ind. J. Agric. Sci. 70: 853–855Google Scholar
  38. Earle ED & Langhans RW (1974a) Propagation of chrysanthemum in vitro I. Multiple plantlets from shoot tips and the establishment of tissue cultures. J. Am. Soc. Hort. Sci. 99: 128–131Google Scholar
  39. Earle ED & Langhans RW (1974b) Propagation of chrysanthemum in vitro II. Production growth and flowering of plantlets from tissue cultures. J. Am. Soc. Hort. Sci. 99: 352–358Google Scholar
  40. El-Twab MHA & Kondo K (2001) Molecular cytogenetic identification of the parental genomes in the intergeneric hybrid between Leucanthemella linearis and Nipponanthemum nipponicum during meiosis and mitosis. Caryologia 54: 109–114Google Scholar
  41. Endo M & Inada I (1997) Production and characteristics of chromosome-doubled plants of small-flowered garden chrysanthemum, Dendranthema grandiflorum (Ramatt.) Kitam. cv. YS by colchicines treatment of cultured shoot tips. J. Jap. Soc. Hort. Sci. 65: 825–833Google Scholar
  42. Endo M, Sasaki T & Inada I (1990) Creation of mutants through tissue culture of edible chrysanthemums Chrysanthemum morifolium Ram. I. Especially the relationship among the different explants and variation in their regenerated plants. J. Fac. Agric. Iwate Univ. 20: 17–34Google Scholar
  43. Endo M, Sasaki T & Inada I (1991) Creation of mutants through tissue culture of edible chrysanthemums Chrysanthemum morifolium Ram. II. Especially an attempt to create chromosome-reduced plants by treatment with PFP on agar medium. J. Fac. Agric. Iwate Univ. 20: 91–103Google Scholar
  44. Engelmann F (2000) Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann F & Takagi H (eds) Cryopreservation of Tropical Plant Germplasm: Current Research Progress and Application (pp. 1–362). JIRCAS (Tsukuba), IPGRI (Rome)Google Scholar
  45. Fu RZ, Liu M, Liang HJ, Zhang CH, Xue H & Sun YR (1998) Production of transgenic plants of chrysanthemum via Agrobacterium tumefaciens mediated method. Acta Phytophysiol. Sin. 24: 72–76Google Scholar
  46. Fujii Y & Shimizu K (1990) Regeneration of plants from achenes and petals of Chrysanthemum coccineum. Plant Cell Rep. 8: 625–627Google Scholar
  47. Fukai S (1990) Cryopreservation of chrysanthemum shoot tips. Sci. Hort. 45: 167–174Google Scholar
  48. Fukai S (1995) Cryopreservation of germplasm of chrysanthemums. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, Vol. 32, Cryopreservation of Plant Germplasm I (pp. 447–457). Springer-Verlag, BerlinGoogle Scholar
  49. Fukai S & Oë M (1986) Effects of plant growth regulators on organ formation from leaf and stem segments of chrysanthemum. Bull. Osaka Agric. Res. Center 23: 25–31Google Scholar
  50. Fukai S & Oë M (1990) Morphological observations of chrysanthemum shoot tips cultured after cryoprotection and freezing. J. Jap. Soc. Hort. Sci. 59: 383–387Google Scholar
  51. Fukai S, Goi M & Tanaka M (1994) The chimeric structure of the apical dome of chrysanthemum (Dendranthema grandiflorum (Ramat. Kitam.) is affected by cryopreservation. Sci. Hort. 57: 347–351.Google Scholar
  52. Fukai S, de Jong J & Rademaker W (1995) Efficient genetic transformation of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) using stem segments. Breed. Sci. 45: 179–184Google Scholar
  53. Fukai S, Kamigaichi Y, Yamasaki N, Zhang W & Goi M (2002) Distribution, morphological variations and cpDNA PCR-RFLP analysis of Dendranthema yoshinaganthum. J. Jap. Soc. Hort. Sci. 71: 114–122Google Scholar
  54. George MW & Tripepi RR (2001) Plant Preservative Mixture TM can affect shoot regeneration from leaf explants of chrysanthemum, European birch, and rhododendron. HortScience 36: 768–769Google Scholar
  55. Gertsson UE & Andersson E (1985) Propagation of Chrysanthemum ×hortorum and Philodendron scandens by tissue culture. Rapport Instit. Tradgards Svërig Landbruks Univ. 41: 17Google Scholar
  56. Hattori K (1992) The process during shoot regeneration in the receptacle culture of chrysanthemum, Chrysanthemum morifolium Ramat. Jap. J. Breed. 42: 227–234Google Scholar
  57. Hill GP (1968) Shoot formation in tissue cultures of chrysanthemum ‘Bronze Pride’. Physiol. Plant. 2: 386–389Google Scholar
  58. Hosokawa M, Hossain MM, Takemoto T & Yazawa S (1998) Particlegun wounding of explants with and without plant-growth regulators effectively induces shoot formation in African violet. Plant Tiss. Cult. Biotech. 4:35–41Google Scholar
  59. Iizuka M, Matsumoto E, Doi A, Madrigal R & Fukushima A (1973) Tubular floret culture of chrysanthemum and cineraria in vitro. Jap. J. Genet. 48: 79–87Google Scholar
  60. Ishida I, Tukahara M, Yoshioka M, Ogawa T, Kakitani M & Toguri T (2002) Production of anti-virus, viroid plants by genetic manipulations. Pest Manage. Sci. 58: 1132–1136Google Scholar
  61. Jeong JH, Chakrabarty D, Kim SJ & Paek KY (2002) Transformation of chrysanthemum (Dendranthema grandiflorum Kitamura cv. Cheonsu by constitutive expression of rice OsMADS1 gene. J. Kor. Soc. Hort. Sci. 43: 382–386Google Scholar
  62. Kagami Y & Okamura M (1997) Flower production in Japan and agribio business and technology of Kirin: a case in private sector approach. In: Watanabe K & Pehu E (eds). Plant Biotechnology and Plant Genetic Resources For Sustainability and Productivity (pp. 173–181) R.G. Landes Co.Google Scholar
  63. Kaul V, Miller RM, Hutchinson JF & Richards D (1990) Shoot regeneration from stem and leaf explants of Dendranthema grandiflora Tzvelev (syn. Chrysanthemum morifolium Ramat.). Plant Cell Tiss. Org. Cult. 21: 21–30Google Scholar
  64. Khalid N, Davey MR & Power JB (1989) An assessment of somaclonal variation in Chrysanthemum morifolium: the generation of plants of potential commercial value. Sci. Hort. 38: 287–294Google Scholar
  65. Khehra M, Lowe KC, Davey MR & Power JB (1995) An improved micropropagation system for Chrysanthemum based on Pluronic F-68-supplemented media. Plant Cell Tiss. Org. Cult. 41: 87–90Google Scholar
  66. Kim J, Park Y, Jung S, Chung H, Shin YS & Sheop J (1998) Transformation of chrysanthemum by Agrobacterium tumefaciens with three vectors. J. Kor. Soc. Hort. Sci. 39: 360–366Google Scholar
  67. Kim M, Kim J & Hee Y (1998) Plant regeneration and flavonoid 3′,5′-hydroxylase gene transformation of Dendranthema indicum and Dendranthema zawadskii. J. Kor. Soc. Hort. Sci. 39: 355–359Google Scholar
  68. Kudo S, Shibata N, Kanno Y & Suzuki M (2002) Transformation of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) via Agrobacterium tumefaciens. Acta Hort. 572: 139–147Google Scholar
  69. Kumar A & Kumar VA (1995) High-frequency in vitro propagation in Chrysanthemum maseimum. Ind. Hort. 1: 37–38Google Scholar
  70. Lazar M & Cachita CD (1982) Micropropagation of Chrysanthemus. II. In vitro culture of shoot meristems. Product. Veg. Hort. 31: 32–35Google Scholar
  71. Lazar M & Cachita CD (1983) Micropropagation of Chrysanthemus. III. Chrysanthemum multiplication in vitro from capitulum explants. Product. Veg. Hort. 32: 44–47Google Scholar
  72. Lazar M, Cachita CD & Bader SM (1981) Micropropagation of Chrysanthemus. I.In vitro multiplication of Chrysanthemus by floral peduncle explants. Product. Veg. Hort. 30: 18–23Google Scholar
  73. Ledger SE, Deroles SC & Given NK (1991) Regeneration and Agrobacterium-mediated transformation of chrysanthemum. Plant Cell Rep. 10: 195–199Google Scholar
  74. Lee CH & Kim KS (2000) Genetic diversity of Chrysanthemum zawadskii Herb. and the related groups in Korea using RAPDs. J. Kor. Soc. Hort. Sci. 41: 230–236Google Scholar
  75. Lee JK, Park KY & Chun CK (1979) In vitro propagation of Chrysanthemum through shoot apical meristem culture. J. Kor. Soc. Hort. Sci. 20: 192–199Google Scholar
  76. Lee T, Huang MEE & Pua EC (1997) High frequency shoot regeneration from leaf disk explants of garland chrysanthemum (Chrysanthemum coronarium L.) in vitro. Plant Sci. 126: 219–226Google Scholar
  77. Lee Y, Kwon K & Lee YJ (1999) Plant regeneration from leaf segment cultures of chrysanthemum (Dendranthema grandiflora Tzvelev). Kor. J. Plant Tiss. Cult. 26: 59–63Google Scholar
  78. Lemieux CS, Firoozabady E & Robinson KEP (1990) In: de Jong J (ed) Agrobacterium-mediated Transformation of Chrysanthemum. Integration of In Vitro Techniques in Ornamental Plant Breeding (pp. 150–155). Wageningen, CPO PressGoogle Scholar
  79. Lindsay GC & Ledger SE (1993) A protoplast to plant system for chrysanthemum Dendranthema zawadskii × D. grandiflora. Plant Cell Rep. 12: 278–280Google Scholar
  80. Lowe JM, Davey MR, Power JB & Blundy KS (1993) A study of some factors affecting Agrobacterium-transformation and plant regeneration of Dendranthema grandiflora Tzvelev (syn. Chrysanthemum morifolium Ramat.). Plant Cell Tiss. Org. Cult. 33: 171–180Google Scholar
  81. Lu CY, Nugent G & Wardley T (1990) Efficient direct plant regeneration from stem segments of chrysanthemum (Dendranthema morifolium Ramat. cv. Royal Purple). Plant Cell Rep. 8: 733–736Google Scholar
  82. Malaure RS, Barclay G, Power JB & Davey MR (1991a) The production of novel plants from florets of Chrysanthemum morifolium using tissue culture 1. Shoot regeneration from ray florets and somaclonal variation exhibited by regenerated plants. J. Plant Physiol. 139: 8–13Google Scholar
  83. Malaure RS, Barclay G, Power JB & Davey MR (1991b) The production of novel plants from florets of Chrysanthemum morifolium using tissue culture 2. Securing natural mutations (sports). J. Plant Physiol. 139: 14–18Google Scholar
  84. Mandal AKA, Chakrabarty D & Datta SK (2000a) In vitro isolation of solid novel flower colour mutants from induced chimeric ray florets of chrysanthemum. Euphytica 114: 9–12Google Scholar
  85. Mandal AKA, Chakrabarty D & Datta SK (2000b) Application of in vitro techniques in mutation breeding of chrysanthemum. Plant Cell Tiss. Org. Cult. 60: 33–38Google Scholar
  86. May RA & Trigiano RN (1991) Somatic embryogenesis and plant regeneration from leaves of Dendranthema grandiflora. J. Am. Soc. Hort. Sci. 116: 366–371Google Scholar
  87. Miyazaki S & Tashiro Y (1978) Tissue culture of Chrysanthemum morifolium Ramat. IV. On the explant sources for stem segment culture. Agric. Bull. Saga Univ. 44: 67–78Google Scholar
  88. Miyazaki S, Tashiro Y & Shimada T (1976) Tissue culture of Chrysanthemum morifolium Ramat. I. Cultivar differences in organ formation. Agric. Bull. Saga Univ. 40: 31–44Google Scholar
  89. Miyazaki S, Kishida E, Tashiro Y & Kanazawa K (1979) Tissue culture of Chrysanthemum morifolium Ramat. V. Histological studies on the callus and shoot formation in stem segments cultured in vitro. Agric. Bull. Saga Univ. 46: 43–65Google Scholar
  90. Mizutani T & Tanaka T (1994) Study on the floret culture of Higo-chrysanthemum. Proc. School Agric. Kyushu Tokai Univ. 13: 9–14Google Scholar
  91. Nhut DT, Teixeira da Silva JA & Aswath CR (2003) The importance of the explant on regeneration in thin cell layer technology. In Vitro Cell. Dev. Biol. 39: 266–276Google Scholar
  92. Ogura H & Kondo K (1998) Application of genomic in situ hybridization to the chromosome complement of the intergeneric hybrid between Leucanthemella linearis (Matsum.) Tzuvelev and Nipponanthemum nipponicum (Franch. et Maxim.) Kitamura. Chromo. Sci. 2: 91–93Google Scholar
  93. Ohishi K & Sakurai Y (1988) Morphological changes in Chrysanthemum derived from petal tissue. Res. Bull. Aichiken Agric. Res. Cent. 20: 278–284Google Scholar
  94. Oka S, Muraoka O, Abe T & Nakajima S (1996) Formation of leaf-like bodies and adventitious buds, and chimeric expression of introduced GUS gene in garland chrysanthemum tissue cultures. J. Jap. Soc. Hort. Sci. 65: 294–295Google Scholar
  95. Oka S, Muraoka O, Abe T & Nakajima S (1999) Adventitious bud and embryoid formation in garland chrysanthemum leaf culture. J. Jap. Soc. Hort. Sci. 68: 70–72Google Scholar
  96. Okamura M, Hayashi T & Miyazaki S (1984) Inhibiting effect of ammonium ion in protoplast culture of some Asteraceae plants. Plant Cell Physiol. 25: 281–286Google Scholar
  97. Otsuka H, Suematsu N & Toda M (1985) The culture and plant regeneration from mesophyll protoplast of chrysanthemum. Bull. Shizuoka Agric. Exp. Statn. 30: 25–33Google Scholar
  98. Otsuka H, Yamada H, Suematsu N & Toda M (1987) Somaclonal variation of protoplast-derived regenerates in chrysanthemum. Bull. Shizuoka Agric. Exp. Statn. 32: 53–59Google Scholar
  99. Paek KY, Hahn EJ & Son SH (2001) Application of bioreactors for large-scale micropropagation systems of plants. In Vitro Cell. Dev. Biol. -- Plant 37: 149–157Google Scholar
  100. Panfilová OF & Andrianov VN (1996) Electrostimulation of rooting of chrysanthemum green cuttings after long-term storage. Izvest. Timiryazev. Selskok. Akadem. 0: 105–113Google Scholar
  101. Pavingerová D, Dostál J, Bísková R & Benetka V (1994) Somatic embryogenesis and Agrobacterium-mediated transformation of chrysanthemum. Plant Sci. 97: 95–101Google Scholar
  102. Petty LM, Harberd NP, Carré IA, Thomas B & Jackson SD (2003) Expression of the Arabidopsis gai gene under its own promoter causes a reduction in plant height in chrysanthemum by attenuation of the gibberellin response. Plant Sci. 164: 175–182Google Scholar
  103. Pillai V & Zulkifli L (2000) Somaclonal variation in Chrysanthemum morifolium generated through petal cultures. J. Trop. Agric. Food Sci. 28: 115–120Google Scholar
  104. Prasad RN & Chaturvedi HC (1988) Effect of explants on micropropagation of Chrysanthemum morifolium. Biol. Plant. 30: 20–24Google Scholar
  105. Prasad RN, Sharma AK & Chaturvedi HC (1993) Clonal multiplication of Chrysanthemum morifolium ‘Otome zakura’ in long-term culture. Bangladesh J. Bot. 12: 96–102Google Scholar
  106. Rademaker W & de Jong J (1990) Genetic variation in adventitious shoot formation in Dendranthema grandiflora (Chrysanthemum morifolium) explants. In: de Jong J (ed) Integration of In Vitro Techniques in Ornamental Plant Breeding (pp. 34–38). CPRO-DLO, WageningenGoogle Scholar
  107. Renou JP, Brochard P & Jalouzot R (1993) Recovery of transgenic chrysanthemum (Dendranthema grandiflora Tzvelev) after hygromycin resistance selection. Plant Sci. 89: 185–197Google Scholar
  108. Roberts AV & Smith EF (1990) The preparation in vitro of chrysanthemum for transplantation to soil 1. Protection of roots by cellulose plugs. Plant Cell Tiss. Org. Cult. 21: 129–132Google Scholar
  109. Robinson KEP & Firoozabady E (1993) Transformation of floriculture crops. Scientia Horticulturae 55: 83–99.Google Scholar
  110. Roest S & Bokelmann GS (1975) Vegetative propagation of Chrysanthemum morifolium Ram. in vitro. Sci. Hort. 3: 317–330Google Scholar
  111. Rout GR & Das P (1997) Recent trends in the biotechnology of Chrysanthemum: a critical review. Sci. Hort. 69: 239–256Google Scholar
  112. Rout GR, Palai SK, Pandey P & Das P (1997) Direct plant regeneration of Chrysanthemum morifolium Ramat. Deep pink: influence of explant source, age of explant, culture environment, carbohydrates, nutritional factors and hormone regime. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 67: 57–66Google Scholar
  113. Sakai A, Matsumoto T, Hirai D & Niino T (2000) Newly developed encapsulation-dehydration protocol for plant cryopreservation. Cryo Lett. 21: 53–62Google Scholar
  114. Sauvadet MA, Brochard P & Boccon-Gibco J (1990) A protoplast-to-plant system in chrysanthemum (Dendranthema grandiflora (Ramat.) Kitamura) using stem segments. Plant Cell Rep. 8: 692–695CrossRefGoogle Scholar
  115. Schum A (2003) Mutation breeding in ornamentals: and efficient breeding method? Acta Hort. 612: 47–60.Google Scholar
  116. Schum A & Preil W (1981) Regeneration of callus from Chrysanthemum morifolium mesophyll protoplast. Gartenbauwissenschaft 46: 91–93Google Scholar
  117. Scott MC, Caetano AG & Trigiano RN (1996) DNA amplification fingerprinting identifies closely related chrysanthemum cultivars. J. Am. Soc. Hort. Sci. 121: 1043–1048Google Scholar
  118. Shao HS, Li JH, Zheng XQ & Chen SC (1999) Cloning of the LFY cDNA from Arabidopsis thaliana and its transformation to Chrysanthemum morifolium. Acta Bot. Sin. 41: 268–271Google Scholar
  119. Sherman JM, Moyer JW & Daub ME (1998) A regeneration and Agrobacterium-mediated transformation system for genetically diverse chrysanthemum cultivars. J. Am. Soc. Hort. Sci. 123: 189–194Google Scholar
  120. Shinoyama H, Nomura Y, Tsuchiya T & Kazuma T (1991) Formation and plant regeneration from leaves of chrysanthemum (Dendranthema grandiflora Tzvelev.). J. Jap. Soc. Hort. Sci. 41 (Suppl.): 158Google Scholar
  121. Shinoyama H, Nomura Y, Tuchiya T & Kazuma T (1997) Direct embryoid formation and plant regeneration from leaves of chrysanthemum (Dendranthema grandiflora Tzvelev). Jap. J. Breed. 46: 158Google Scholar
  122. Shinoyama H, Komano M, Nomura Y & Nagai T (2002) Introduction of delta-endotoxin gene of Bacillus thuringiensis to chrysanthemum [Dendranthema ×grandiflorum (Ramat.) Kitamura] for insect resistance. Breed. Sci. 52: 43–50Google Scholar
  123. Shirasawa N, Iwai T, Nakamura S & Honkura R (2000) Transformation and transgene expression of chrysanthemum (Dendranthema grandiflora (Ramat.) Kitamura). Bull. Miyagi Prefect. Agric. Res. Centre 67: 15–20Google Scholar
  124. Sun JX & Li CP (1987) Effects of MS medium on root formation off shoot tips from several famed kinds of Chrysanthemum. Acta Sci. Nat. Univ. Sunyatseni 1: 121–122Google Scholar
  125. Sutter E & Langhans RW (1981) Abnormalities in Chrysanthemum regenerated from long-term cultures. Ann. Bot. 48: 559–568Google Scholar
  126. Takatsu Y, Tomotsune H, Kasumi M & Sakuma F (1998) Differences in adventitious shoot regeneration capacity among Japanese chrysanthemum (Dendranthema grandiflora (Ramat.) Kitamura) cultivars and the improved protocol for Agrobacterium-mediated genetic transformation. J. Jap. Soc. Hort. Sci. 67: 958–964Google Scholar
  127. Takatsu Y, Nishizawa Y, Hibi T & Akutsu K (1999) Transgenic chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Sci. Hort. 82: 113–123Google Scholar
  128. Tanaka K, Kanno Y, Higuchi K & Suzuki M (1998) Somatic embryo formation and somaclonal variation in chrysanthemum. J. Jap. Soc. Hort. Sci. 67: 249Google Scholar
  129. Tanaka K, Kanno Y, Kudo S & Suzuki M (2000) Somatic embryogenesis and plant regeneration in chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura). Plant Cell Rep. 19: 946–953Google Scholar
  130. Tanimoto H & Kagi T (1990) Culture and regeneration of Chrysanthemum coronarium L. leaf protoplasts. J. Jap. Soc. Hort. Sci. 59: 252–253Google Scholar
  131. Teixeira da Silva JA (2002a) Polyamines in the regulation of chrysanthemum and tobacco in vitro morphogenic pathways. Prop. Ornamental Plants 2: 9–15Google Scholar
  132. Teixeira da Silva JA (2002b) Antibiotics in successful transformation and in the war against plant tissue culture infection. Newslett. Int. Soc. Chemother. 6: 13Google Scholar
  133. Teixeira da Silva JA (2003) Filter paper significantly affects the morphogenic programmes, and buffers the phytotoxic effect of antibiotics in chrysanthemum and tobacco thin cell layer in vitro culture. HortScience 38: 1403–1407Google Scholar
  134. Teixeira da Silva JA (2003a) Thin cell layer technology for induced response and control of rhizogenesis in chrysanthemum. Plant Growth Regul. 39: 67–76Google Scholar
  135. Teixeira da Silva JA (2003b) Control of chrysanthemum organo-genesis by thin cell layer technology. Asian J. Plant Sci. 2: 505–514Google Scholar
  136. Teixeira da Silva JA & Fukai S (2001) The impact of carbenicillin, cefotaxime and vancomycin on chrysanthemum and tobacco TCL morphogenesis and Agrobacterium growth. J. Appl. Hort. 3: 18–27Google Scholar
  137. Teixeira da Silva JA & Fukai S (2002a) Increasing transient and subsequent stable transgene expression in chrysanthemum (Dendranthema ×grandiflora (Ramat.) Kitamura) following optimization of particle bombardment and Agroinfection parameters. Plant Biotechnol. 19: 229–240Google Scholar
  138. Teixeira da Silva JA & Fukai S (2002b) Change in transgene expression following transformation of chrysanthemum by four gene introduction methods. Prop. Ornamental Plants 2: 28–37Google Scholar
  139. Teixeira da Silva JA, Nhut DT, Tanaka M & Fukai S (2003) The effect of antibiotics on the in vitro growth response of chrysanthemum and tobacco stem transverse thin cell layers (tTCLs). Sci. Hort. 97: 397–410Google Scholar
  140. Teixeira da Silva JA, Yonekura L, Kaganda J, Mookdasanit J, Nhut DT, Afach G The pharmacological importance (use, bioactivity, chemical constituents) of species within the Anthemideae (Asteraceae): a review. J. Herbs Spices Med. Plants (in press)Google Scholar
  141. Tian XF, Liu ZQ & Zhang JF (1993) Effect of salt on rooting of Chrysanthemum and Vinca major shoots in vitro. Acta Hort. 20: 101–102Google Scholar
  142. Toguri T, Ogawa T, Kakitani M, Tukahara M & Yoshioka M (2003) Agrobacterium-mediated transformation of chrysanthemum (Dendranthema grandiflora) plants with a disease resistant gene (pac1). Plant Biotechnol. 20: 121–127Google Scholar
  143. Tosca A, Delledonne M, Furini A, Belenghi B, Fogher C & Frangi P (2000) Transformation of Korean chrysanthemum (Dendranthema zawadskii ×D. X grandiflorum) and insertion of the maize autonomous element Ac using Agrobacterium tumefaciens. J. Genet. Breed. 54: 19–24Google Scholar
  144. Trigiano RN, Scott MC & Caetano AG (1998) Genetic signatures from amplification profiles characterize DNA mutation in somatic and radiation-induced sports of chrysanthemum. J. Am. Soc. Hort. Sci. 123: 642–646Google Scholar
  145. Urban LA, Sherman JM, Moyer JW & Daub ME (1994) High frequency shoot regeneration and Agrobacterium-mediated transformation of chrysanthemum (Dendranthema grandiflora). Plant Sci. 98: 69–79Google Scholar
  146. van Harten AM (2002) Mutation breeding of vegetatively propagated ornamentals. In: Vainstein A (ed) Breeding for Ornamentals: Classical and Molecular Approaches (pp. 105–127). Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  147. van Wordragen MF, Ouwerkerk PBF & Dons HJM (1992a) Agrobacterium rhizogenes mediated induction of apparently untransformed roots and callus in chrysanthemum. Plant Cell Tiss. Org. Cult. 30: 149–157Google Scholar
  148. van Wordragen MF, de Jong J, Schornagel MJ & Dons HJM (1992b) Rapid screening for host-bacterium interactions in Agrobacterium-mediated gene transfer to chrysanthemum, by using the GUS-intron gene. Plant Sci. 81: 207–214Google Scholar
  149. Votruba R & Kodýtek R (1988) Investigation of genetic stability in Chrysanthemum morifolium ‘Blanche Poitevine Supréme’ after meristem culture. Acta Hort. 226: 311–319Google Scholar
  150. Wang SO & Ma SS (1978) Clonal multiplication of Chrysanthemum in vitro. J. Agric. Ass. China 32: 64–73Google Scholar
  151. Watanabe K (1977) Successful ovary culture and production of F1 hybrids and androgenic haploids in Japanese chrysanthemum species. J. Hered. 68: 317–320Google Scholar
  152. Widiastoety D (1987) Preliminary experiment on tissue culture of Chrysanthemum morifolium. Ram. Bull. Penilit. Hort. 15: 231–236Google Scholar
  153. Wolff K (1996) RAPD analysis of sporting and chimerism in chrysanthemum. Euphytica 89: 159–164Google Scholar
  154. Yepes LC, Mittak V, Pang SZ, Gonsalves C, Slightom JL & Gonsalves D (1995) Biolistic transformation of chrysanthemum with the nucleocapsid gene of tomato spotted wilt virus. Plant Cell Rep. 14: 694–698Google Scholar
  155. Yepes LC, Mittak V, Pang SZ, Gonsalves C, Slightom JL & Gonsalves D (1999) Agrobacterium tumefaciens versus biolistic-mediated transformation of the chrysanthemum cvs. Polaris and Golden Polaris with nucleocapsid protein genes of three Tospovirus species. Acta Hort. 482: 209–218Google Scholar
  156. Yi J, Wang B, Wang X, Duan C & Yang X (2003) Effect of sound stimulation on roots growth and plasmalemma H+-ATPase activity of chrysanthemum (Gerbera jamesonii). Colloids Surfaces B: Biointerfaces 27: 65–69Google Scholar
  157. Yiyao L, Bochu W, Xuefeng L, Chuanren D & Sakanishi A (2002) Effects of sound field on the growth of Chrysanthemum callus. Colloids Surfaces B: Biointerfaces 24: 321–326Google Scholar
  158. Young KJ, Jung PS, Young UB, Ho PC, Soo CY & Sheop SJ (1998) Transformation of chrysanthemum by Agrobacterium tumefaciens with three different types of vectors. J. Kor. Soc. Hort. Sci. 39: 360–366Google Scholar
  159. Zheng ZL, Yang Z, Jang JC & Metzger JD (2001) Modification of plant architecture in chrysanthemum by ectopic expression of the tobacco phytochrome B1 gene. J. Am. Soc. Hort. Sci. 126: 19–26Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Jaime A. Teixeira da Silva
    • 1
  1. 1.Faculty of AgricultureKagawa UniversityKagawa-kenJapan

Personalised recommendations