Skip to main content
Log in

Expression of the Human Milk Protein sCD14 in Tobacco Plant Cell Culture

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

The human milk protein sCD14 was expressed in tobacco plant cell cultures. Tobacco cells were transformed with a modified cd14 cDNA minus the GPI-tail and either the native human signal peptide (SP) or a plant SP, under the control of the CaMV-35S promoter. Transformants were screened using PCR and Southern blot analysis. The functionality of the inserted cDNA was checked by northern blot analysis for the presence of recombinant sCD14 mRNA. The detection of the protein has been observed by western blot analysis at an estimated level of 5 µg l−1 in a non-soluble fraction of the culture medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adang MJ, Brody MS, Cardineau G, Eagan N, Roush RT, Shewmaker CK, Jones A, Oakes JV & McBride KE (1993) The reconstruction and expression of a Bacillus thuringiensis cryIIIA gene in protoplasts and potato plants.Plant Mol. Biol. 21: 1131–1145

    Article  CAS  PubMed  Google Scholar 

  • Arakawa T, Chong DK, Slattery CW & Langridge WH (1999) Improvements in human health through production of human milk proteins in transgenic food plants. Adv. Exp. Med. Biol. 464: 149–159

    CAS  PubMed  Google Scholar 

  • Choi SM, Lee O, Kwon S, Kwak SS, Yu D & Lee HS (2003) High expression of a human lactoferrin in transgenic tobacco cell cultures. Biotechnol. Lett. 25: 213–218

    CAS  PubMed  Google Scholar 

  • Chong DKX, Roberts W, Arakawa T, Illes K, Bagi G, Slattery CW & Langridge WHR (1997) Expression of the human milk protein β-casein in transgenic potato plants. Transgenic Res. 6: 289–296

    Article  CAS  PubMed  Google Scholar 

  • Doran P (2000) Foreign protein production in plant tissue cultures. Curr. Opin. Biotechnol. 11: 199–204

    Article  CAS  PubMed  Google Scholar 

  • Durieux JJ, Vita N, Popescu O, Guette F, Calzada-Wack J, Munker R, Schmidt RE, Lupker J, Ferrara P, Ziegler-Heitbrock HW & Labeta MO (1994) The two soluble forms of the lipopolysaccharide receptor, CD14: characterization and release by normal human monocytes. Eur. J. Immunol. 24: 2006–2012

    CAS  PubMed  Google Scholar 

  • Dziarski R, Viriyakosol S, Kirkland TN & Gupta D (2000) Soluble CD14 enhances membrane CD14-mediated responses to peptidoglycan: structural requirements differ from those for responses to lipopolysaccharide. Infect. Immun. 68: 5254–5260

    Article  CAS  PubMed  Google Scholar 

  • Ferrero E, Hsieh CL, Francke U & Goyert SM (1990) CD14 is a member of the family of leucine-rich proteins and is encoded by a gene syntenic with multiple receptor genes. J. Immunol. 145: 331–336

    CAS  PubMed  Google Scholar 

  • Fischer R, Emans N, Schuster F, Hellwig S & Drossard J (1999) Towards molecular farming in the future: using plant-cellsuspension cultures as bioreactors. Biotechnol. Appl. Biochem. 30: 109–112

    CAS  PubMed  Google Scholar 

  • Frank R, Meyerhans A, Schwellnus K & Blöcker H (1987) Simultaneous synthesis and biological applications of DNA fragments: an efficient and complete methodology. Methods Enzymol. 154: 221–249

    CAS  PubMed  Google Scholar 

  • Gartland K & Davey M (1995) In: John M Walker (ed) Methods in Molecular Biology, Vol. 44: Agrobacterium Protocols (p. 24). Humana Press Inc, Totowa

    Google Scholar 

  • Gomord V, Fitchette-Lainé AC, Denmat LA, Michaud M & Faye L (1998) Production of foreign proteins in tobacco cells. In: Cunningham C & Porter A (eds) Methods in Biotechnology: Recombinant Proteins from Plants: Production and Isolation of Clinically Useful Compounds (pp. 155–163). Humana Press Inc, Totowa

    Google Scholar 

  • Gysler C, van den Broek P, Duboc P, Bou-Habid G, Vidal K, Nicaud JM, Schiffrin EJ & Niederberger P (2001) Expression of biologically active, human soluble CD14 in Yarrowia lipolytica. Poster of the 20th International Conference on Yeast Genetics and Molecular Biology, 26-31 August, Prague, Czech Republic

  • Hailman E, Lichenstein HS, Wurfel MM, Miller DS, Johnson DA, Kelley M, Busse LA, Zukowski MM & Wright SD (1994) Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J. Exp. Med. 179: 269–277

    Article  CAS  PubMed  Google Scholar 

  • Haziot A, Chen S, Ferrero E, Low MG, Silber R & Goyert SM (1988) The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J. Immunol. 141: 547–552

    CAS  PubMed  Google Scholar 

  • Haziot A, Rong GW, Basil V, Silver J & Goyert SM (1994) Recombinant soluble CD14 inhibits LPS-induced tumor necrosis factor-alpha production by cells in whole blood. J. Immunol. 152: 5868–5876

    CAS  PubMed  Google Scholar 

  • Higo K, Saito Y & Higo H (1993) Expression of a chemically synthesized gene for human epidermal growth factor under the control of cauliflower mosaic virus 35S promoter in transgenic tobacco. Biosci. Biotechnol. Biochem. 57: 1477–1481

    CAS  PubMed  Google Scholar 

  • Höfgen R & Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 16: 9877–9883

    PubMed  Google Scholar 

  • James E & Lee JM (2001) The production of foreign proteins from genetically modified plant cells. In: Scheper T (ed) Advances in Biochemical Engineering/Biotechnology, Vol. 72 (pp. 127–156). Springer-Verlag, Berlin

    Google Scholar 

  • Jiang Q, Akashi S, Miyake K & Petty HR (2000) Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J. Immunol. 165: 3541–3544

    CAS  PubMed  Google Scholar 

  • Larrick JW, Yu L, Naftzger C, Jaiswal S & Wycoff K (2002) Human pharmaceuticals produced in plants. In: Hood EE & Howard A (eds) Plants as Factories for Protein Production (pp. 79–102). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Lönnerdal B (2002) Expression of human milk proteins in plants. J. Am. Col. Nut. 21: 218–221

    Google Scholar 

  • Magnuson NS, Linzmaier PM, Reeves R, An G & Lee JM (1998) Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture. Protein Exp. Purif. 13: 45–52

    CAS  Google Scholar 

  • Maliszewski CR (1991) CD14 and immune response to lipopolysaccharide. Science 252: 1321–1322

    CAS  PubMed  Google Scholar 

  • Mallée LF & Steijns JM(2001) Defence proteins in milk. Industrial Proteins 9: 16–19

    Google Scholar 

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15: 473–497

    CAS  Google Scholar 

  • Nomura S, Inamori K, Muta T, Yamazaki S, Sunakawa Y, Iwanaga S & Takeshige K (2002) Purification and characterization of human soluble CD14 expressed in Pichia pastoris. Protein Exp. Purif. 28: 310–320

    Google Scholar 

  • Oxley D & Bacic A (1999) Structure of the glycosylphosphatidylinositol anchor of an arabinogalactan protein from Pyrus communis suspension-cultured cells. Proc. Natl. Acad. Sci. USA. 96: 14246–14251

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Maniatis T & Fritsch EF (1989) Molecular Cloning: A Laboratory Manual, p. 3v. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Schillberg S, Fischer R & Emans N (2003).Molecular farming of recombinant antibodies in plants. Cell. Mol. Life Sci. 60: 433–445

    CAS  PubMed  Google Scholar 

  • Sutton DW, Havstad PK & Kemp JD (1992) Synthetic cryIIIA gene from Bacillus thuringiensis improved for high expression in plants. Transgenic Res. 1: 228–236

    CAS  PubMed  Google Scholar 

  • Suzuki YA, Kelleher SL, Yalda D, Wu L, Huang J, Huang N & Lönnerdal B (2003) Expression, characterization and biologic activity of recombinant human lactoferrin in rice. J. Pediatr. Gastroenterol. Nutr. 36: 190–199

    Article  CAS  PubMed  Google Scholar 

  • Svetek J, Yadav MP & Nothnagel EA (1999) Presence of a glycosylphosphatidylinositol lipid anchor on rose arabinogalactan proteins. J. Biol. Chem. 274: 14724–14733

    Article  CAS  PubMed  Google Scholar 

  • Takase K & Hagiwara K (1998) Expression of human alphalactalbumine in transgenic tobacco. J. Biochem. 123: 440–444

    CAS  PubMed  Google Scholar 

  • Takos AM, Dry IB & Soole KL (2000) Glycosyl-phosphatidylinositol-anchor addition signals are processed in Nicotiana tabacum. Plant J. 21: 43–52

    Article  CAS  PubMed  Google Scholar 

  • Tobias PS & Ulevitch RJ (1994) Lipopolysaccharide-binding protein and CD14 in the lipopolysaccharide-dependent activation of cells. Chest 105(3 Suppl): 48–50

    Google Scholar 

  • Verdelhan des Molles D, Gomord V, Bastin M, Faye L & Courtois D (1999) Expression of a carrot invertase gene in tobacco suspension cells cultivated in batch and continuous conditions. J. Biosci. Bioengin. 87: 302–306

    CAS  Google Scholar 

  • Vidal K, Labeta MO, Schiffrin EJ & Donnet-Hughes A (2001) Soluble CD14 in human breast milk and its role in innate immune responses. Acta Odontol. Scand. 59: 330–334

    CAS  PubMed  Google Scholar 

  • Walmsley AM & Arntzen CJ (2003) Plant cell factories and mucosal vaccines. Curr. Opin. Biotechnol. 14: 145–150

    Article  CAS  PubMed  Google Scholar 

  • Witcher DR, Hood EE, Peterson D, Bailey M, Bond D, Kusnadi A, Evangelista R, Nikolov Z, Wooge C, Mehigh R, Kappe W, Register J & Howard JA (1998) Commercial production of betaglucuronidase (GUS): a model system for the production of proteins in plants. Mol. Breed. 4: 301–312

    Article  CAS  Google Scholar 

  • Wright SD (1995) CD14 and innate recognition of bacteria. J. Immunol. 155: 6–8

    CAS  PubMed  Google Scholar 

  • Wright SD, Ramos RA, Tobias PS, Ulevitch RJ & Mathison JC (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249: 1431–1433

    CAS  PubMed  Google Scholar 

  • Yin J, Bai J, Wang W, Song W & Wang Z (2002) Gene cloning of human soluble CD14 and its expression in eucaryotic cells. Chin. J. Traumatol. 5: 156–160

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Courtois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girard, L.S., Bastin, M. & Courtois, D. Expression of the Human Milk Protein sCD14 in Tobacco Plant Cell Culture. Plant Cell, Tissue and Organ Culture 78, 253–260 (2004). https://doi.org/10.1023/B:TICU.0000025667.46429.4d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TICU.0000025667.46429.4d

Navigation