Advertisement

Space Science Reviews

, Volume 111, Issue 1–2, pp 33–114 | Cite as

The plasma Environment of Mars

  • A.F. Nagy
  • D. Winterhalter
  • K. Sauer
  • T.E. Cravens
  • S. Brecht
  • C. Mazelle
  • D. Crider
  • E. Kallio
  • A. Zakharov
  • E. Dubinin
  • M. Verigin
  • G. Kotova
  • W.I. Axford
  • C. Bertucci
  • J.G. Trotignon
Article

Keywords

Plasma Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acuña, M. H. et al.: 1992, ‘Mars Observer Magnetic Fields Investigation’, J. Geophys. Res. 97, 7799.ADSGoogle Scholar
  2. Acuña, M. H. et al.: 1998, ‘Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission’, Science 279, 1676.ADSGoogle Scholar
  3. Acuña, M. H. et al.: 1999, ‘Global Distribution of Crustal Magnetization Discovered by the Mars Global Surveyor MAG/ER Experiment’, Science 284, 790.ADSGoogle Scholar
  4. Acuña, M. H., Connerney, J. E. P., Ness, N. F., Lin, R. P., Mitchell, D., Carlson, C. W., McFadden, J., Anderson, K. A., Rème, H., Mazelle, C., Vignes, D., Wasilewski, P. and Cloutier, P.: 2001, ‘The Magnetic Field of Mars: Summary of Results From the Aerobraking and Mapping Orbits’, J. Geophys. Res. 106, 23403.CrossRefADSGoogle Scholar
  5. Albee, A. L., Palluconi, F. D. and Arvidson, R. A.: 1998, ‘Mars Global Surveyor mission: Overview and Status’, Science 279, 1671.CrossRefADSGoogle Scholar
  6. Alfvén, H.: 1957, ‘On the Theory of Comet Tails’, Tellus 9, 92.Google Scholar
  7. Alexander, C. J. and Russell C. T.: 1985, ‘Solar Cycle Dependence of the Location of the Venus Bow Shock’, Geophys. Res. Lett. 12, 369.ADSGoogle Scholar
  8. Arkani-Hamed, J.: 2001, ‘A 50-degree Spherical Harmonic Model of the Magnetic Field of Mars’, J. Geophys. Res. 106, 23197.ADSGoogle Scholar
  9. Axford W. I.: 1991, ‘A Commentary on Our Present Understanding of the Martian Magnetosphere’, Planetary Space Sci. 39, 167.CrossRefADSGoogle Scholar
  10. Barabash, S. et al.: 1995, ‘Diagnostic of Energetic Neutral Particles at Mars by the ASPERA-C Instrument For the Mars 96 Mission’, Adv. Space Res. 16,(4)81.ADSGoogle Scholar
  11. Barabash, S., Holmström, M., Lukyanov, A. and Kallio, E.: 2002, ‘Energetic Neutral Atoms at Mars IV: Imaging of Planetary Oxygen’, J. Geophys. Res. 107(A10), 1280.CrossRefGoogle Scholar
  12. Bauer, S. J.: 1973, Physics of Planetary Ionospheres, Springer-Verlag, New York.Google Scholar
  13. Bauer, S. J. and Hantsch, M. H.: 1989, ‘Solar Cycle Variations of the Upper Atmosphere Temperatur of Mars’, Geophys. Res. Lett. 16, 373.ADSGoogle Scholar
  14. Bauer, S. J.: 1999, ‘Mars Upper Atmosphere: Response to Solar Activity’, Anzeiger Abt. II 136, 19.Google Scholar
  15. Baumgärtel K. and Sauer, K.: 1992, ‘Interaction of a Magnetized Plasma Stream with an Immobile Ion Cloud’, Ann. Geophys. 10, 763–771.ADSGoogle Scholar
  16. Bertucci , C., Mazelle, C., Crider, D. et al., 2002, ‘Magnetic Field Line Draping Enhancement across the Martian Magnetic Pileup Boundary’, EGU Meeting, Nice, France.Google Scholar
  17. Bertucci, C., Mazelle, C., Vignes, D., Crider, D. H., Acuña, M. H., Connerney, J. E. P., Mitchell, D. L., Lin, R. P., Rème, H., Cloutier, R. A., Ness, N. F. and Winterhalter, D.: 2003a, ‘Magnetic Field Draping Enhancement at the Magnetic Pileup Boundary from Mars Global Surveyor’, Observations, Geophys. Res. Lett. 30(2), 1099, 10.1029/2002 GL015713.CrossRefADSGoogle Scholar
  18. Bertucci, C., Mazelle, C., Slavin, J. A., Russell, C. T. and Acuna, M. H., 2003b, Magnetic Field Draping Enhancement at Venus; Evidence of Magnetic Pileup Boundary, Geophys. Res. Lett. 30(17), 1876, doi: 10.1029/2003 GL017271.ADSGoogle Scholar
  19. Bezrukikh, V. V., Verigin, M. I. and Shutte, N. M.: 1978, ‘On the Disclosure of the Heavy Ions in the Region of the Solar Wind Interaction with Mars planet, Kosmicheskie Issledovaniya (Space Research)’, 16(4), 583–587, (in Russian).Google Scholar
  20. Bougher, S. W., Engel, S., Hinson, D. P. and Forbes, J. M.: 2001, Mars Global Surveyor Radio Science Electron Density Profiles: Neutral Atmosphere Implications', Geophys. Res. Lett. 16, 3091.ADSGoogle Scholar
  21. Brace, L. H. and Kliore, A. J.: 1991, ‘The Structure of the Venus Ionosphere’, Space Sci. Rev. 55, 81.CrossRefADSGoogle Scholar
  22. Brain, D. A. et al.: 2003, ‘Reconnection of Martian Crustal Magnetic Fields to the Solar Wind’, J. Geophys. Res. 108 (A12), 1424, 10.1029/2002 JA009482.CrossRefADSGoogle Scholar
  23. Brannon, J. F., Fox, J. L. and Porter, H. S.: 1993, ‘Evidence for Day-to Night Transport at Low Solar Activity in the Venus pre-dawn Ionosphere’, Geophys. Res. Lett. 20, 2739.ADSGoogle Scholar
  24. Brecht, S. H. and Thomas, V. A.: 1988, ‘Multidimensional Simulations Using Hybrid Particle Codes’, Comp. Phys. Comm. 48, 135.ADSGoogle Scholar
  25. Brecht, S. H. and Ferrante, J. R.: 1991, ‘Global Hybrid Simulation of Unmagnetized Planets: Comparison of Venus and Mars’, J. Geophys. Res. 96, 11209.ADSGoogle Scholar
  26. Brecht, S. H., Ferrante, J. R. and Luhmann, J. G.: 1993, ‘Three-dimensional Simulations of the Solar Wind Interaction With Mars’, J. Geophys. Res. 98, 1345.ADSGoogle Scholar
  27. Brecht, S. H.: 1997a, ‘Hybrid Simulations of the Magnetic Topology of Mars’, J. Geophys. Res. 102, 4743.ADSGoogle Scholar
  28. Brecht, S. H.: 1997b, ‘Solar Wind Proton Deposition into the Martian Atmosphere’, J. Geophys. Res. 102, 11287.ADSGoogle Scholar
  29. Brecht, S. H.: 2002, ‘Numerical Techniques Associated with Simulations of Solar Wind Interactions with Non-Magnetized Bodies’, Comparative Aeronomy in The Solar System, eds. M. Mendillo, A. Nagy and H. Waite, American Geophysical Union, Washington.Google Scholar
  30. Breus, T. K., Krymskii, A. M., Lundin, R., Dubinin, E. M., Luhmann, J. G., Yeroshenko, Ye. G., Barabash, S. V., Mitnitskii, V. Ya., Pissarenko, N. F. and Styashkin, V. A.: 1991, ‘The Solar Wind Interaction with Mars: Consideration of Phobos 2 Mission Observations of an Ion Composition Boundary on the Dayside’, J. Geophys. Res. 96, 11165–11174.Google Scholar
  31. Breus, T. K. and Krymskii, A. M.: 1992, ‘Turbulent Pick-up of New-born Ions near Venus and Mars and Problems of Numerical Modelling of the Solar Wind Interaction with These Planets. —I. Features of the Solar Wind Interaction with Planets’, Planetary Space Sci. 40, 121.ADSGoogle Scholar
  32. Breus, T. K. et al.: 1992, ‘Turbulent Pick-up of New-born Ions Near Venus and Mars and Problems of Numerical Modelling of the Solar Wind Interaction with These Planets. —II. Two-fluid HD-model’, Planetary Space Sci. 40, 131.ADSGoogle Scholar
  33. Breus, T. K. et al.: 1998, ‘Conditions in the Martian Ionosphere/atmosphere from a Comparison of a Thermospheric Model with Radio Occultation Data’, Planetary Space Sci. 46, 367.CrossRefADSGoogle Scholar
  34. Bryant D., Krimigis, S. M. and Haerendel, G.: 1985, IEEE Trans. Geosc. Remote Sensing GE-23, 177.Google Scholar
  35. Chen, R. H., Cravens, R. E. and Nagy, A. F.: 1978, ‘The Martian Ionosphere in Light of the Viking Observations’, J. Geophys. Res. 83, 3871.ADSGoogle Scholar
  36. Chen, Y, Cloutier, P. A., Crider, D. H., Mazelle, C. and Rème, H.: 2001, ‘On the Role of Charge Exchange in the Formation of the Martian Magnetic Pileup Boundary’, J. Geophys. Res. 106, 29387.ADSGoogle Scholar
  37. Choi, Y. W. et al.: 1998, ‘Effect of the Magnetic Field on the Energetics of Mars's Ionosphere’, Geophys. Res. Lett. 25, 2753.CrossRefADSGoogle Scholar
  38. Cloutier P. A. and Daniell, R. E. and Butler: 1973, ‘Ionospheric Currents Induced by Solar Wind Interaction with Planetary Atmospheres’, Planetary Space Sci. 21, 463.CrossRefADSGoogle Scholar
  39. Cloutier, P. A. and Daniell, R. E.: 1979, ‘An Electrodynamic Model of the Solar Wind Interaction with the Ionospheres of Mars and Venus’, Planetary Space Sci. 27, 1111.CrossRefADSGoogle Scholar
  40. Cloutier, P. A. et al.: 1999, ‘Venus-like Interaction of the Solar Wind with Mars’, Geophys. Res. Lett. 26, 2685.CrossRefADSGoogle Scholar
  41. Connerney, J. E. P. et al.: 1999, ‘Magnetic Lineations in the Ancient Crust of Mars’, Science 284, 794.CrossRefADSGoogle Scholar
  42. Cravens, T. E., Gombosi, T. I., Kozyra, J. U., Nagy, A. F., Brace L. H. and Knudsen, W. C.: 1980, ‘Model Calculations of the Dayside Ionosphere of Venus: Energetics’, J. Geophys. Res. 85, 7778.ADSGoogle Scholar
  43. Cravens, T. E.: 1991, Ionospheric models for Venus and Mars, p. 277 in Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions, Geophysical Monograph 66, American Geophysical Union, Washington DC.Google Scholar
  44. Cravens, T. E., Shinagawa, H. and Luhmann, J. G.: 1997, in S. Bougher, D. Hunten, and R. Phillips (eds.), Magnetohydrodynamic Processes: Magnetic Fields in the Ionosphere of Venus, Venus II, University of Arizona Press, Tucson, pp. 61–93.Google Scholar
  45. Cravens, T. E.: 2000, ‘X-ray Emission from Comets and Planets’, Adv. Space Res. 26, 1443.ADSGoogle Scholar
  46. Cravens, T. E. and Maurellis, A. N.: 2001, ‘X-ray Emission from Scattering and Fluorescence of Solar X-rays at Venus and Mars’. Geophys. Res. Lett. 28, 3043.CrossRefADSGoogle Scholar
  47. Cravens, T. E., Hoppe, A., Ledvina, S. A. and McKenna-Lawlor, S.: 2002, ‘Pickup Ions near Mars Associated with Escaping Oxygen Atoms’, J. Geophys. Res. 107.Google Scholar
  48. Crider, D. H. et al.: 2000, ‘Evidence for Electron Impact Ionization in the Magnetic Pile-up Boundary of Mars’, Geophys. Res. Lett. 27, 45.CrossRefADSGoogle Scholar
  49. Crider, D. H., Acuña, M., Connerney, J. et al.: 2001, ‘Magnetic Field Draping Around Mars: Mars Global Surveyor Results’, Adv. Space Res. 27(11), 1831.ADSGoogle Scholar
  50. Crider, D. H., Acuña, M. H., Connerney, J. E. P., Mitchell, D. L., Lin, R. P., Cloutier, P. A., Rème, H., Mazelle, C., Brain, D., Ness, N. F., and Bauer, S.: 2002, ‘Observations of the Latitude Dependence of the Location of the Martian Magnetic Pileup Boundary’, Geophys. Res. Lett. 29(8), 10.1029/2001 GL013860.Google Scholar
  51. Crider, D. H. et al.: 2002, ‘Mars Global Surveyor Observations of Solar Wind Magnetic Field Draping Around Mars’, Space Sci. Rev. 111(1-2), 203–221.ADSGoogle Scholar
  52. Crider, D. H., Vignes, D., Krymskii, A. M., Breus, T. K., Ness, N. F., Mitchell, D. L., Slavin, J. A. and Acuña, M. H.: 2003, ‘A Proxy for Determining Solar Wind Dynamic Pressure at Mars using Mars Global Surveyor Data’, J. Geophys. Res. 108 (A12): 1461, 10.1029/2003 JA009875.CrossRefGoogle Scholar
  53. Dennerl, K.: 2001, ‘Discovery of X-rays from Venus with Chandra. In 'High Energy Universe at Sharp Focus: Chandra Science’. Proceedings of a conference held in St. Paul, MN, 16–18 July 2001. ASP Conference Series.Google Scholar
  54. Dennerl, K.: 2002, ‘Discovery of X-rays from Mars with Chandra’, Astron. Astrophys., 394, 1119 doi: 10.1051/0004-6361: 20021116.CrossRefADSGoogle Scholar
  55. Dobe, Z., Nagy, A. F. and Fox, J. L.: 1995, ‘A Theoretical Study Concerning the Solar Cycle Dependence of the Nightside Ionosphere of Venus’, J. Geophys. Res. 100, 14507.CrossRefADSGoogle Scholar
  56. Dolginov Sh., Yeroshenko, Ye. G. and Zhuzgov, D. N.: 1976a, ‘Magnetic Field of Mars According to Data Mars-3 and Mars-5 Satellites’, J. Geophys. Res. 81, 3353.ADSGoogle Scholar
  57. Dolginov, Sh., Yeroshenko, Ye. G., Zhuzgov, L. N. Sharova, V. A., Gringauz, K. I., Bezrukikh, V. V., Breus, T. K., Verigin, M. I. and Remizov, A. P.: 1976b, in N. F. Ness (ed.), ‘Magnetic Field and Plasma Inside and Outside of the Martian Magnetosphere’, Solar Wind Interaction with the Planets Mercury, Venus, and Mars, NASA SP-397, 1–20.Google Scholar
  58. Dubinin, E. and Podgorny, I. M.: 1980, ‘Combined magnetosphere’, Cosmic Research, Engl. Transl. 18, 470.ADSGoogle Scholar
  59. Dubinin, E. M., Lundin, R., Norberg, O. and Pissarenko, N.: 1993a, ‘Ion Acceleration in the Martian Tail: The Phobos Observations’, J. Geophys. Res. 98, 3991.ADSGoogle Scholar
  60. Dubinin, E. M., Lundin, R., Koskinen, H. and Norberg, O.: 1993b, ‘Cold Ions at the Bow Shock: Phobos Observations’, J. Geophys. Res. 98, 5617.ADSGoogle Scholar
  61. Dubinin E. M., Lundin, R. and Schwingenschuh, K.: 1994, ‘Solar Wind Electrons as Tracers of the Martian Magnetotail Topology’, J. Geophys. Res. 99, 21233.CrossRefADSGoogle Scholar
  62. Dubinin E. M., Obod, D., Lundin, R., Schwngenschuh, K. and Grard, R.: 1995, ‘Some Features of the Martian Bow Shock’, Adv. Space Res. 15(8/9), 423.ADSGoogle Scholar
  63. Dubinin E. M., Sauer, K., Lundin, R., Baumgartel, K. and Bogdanov, A.: 1996a, ‘Structuring of the Transition Region (Plasma Mantle) of the Martian Magnetosphere’, Geophys. Res. Lett. 23, 785.CrossRefADSGoogle Scholar
  64. Dubinin, E. M. et al.: 1996b, ‘Plasma Characteristics of the Boundary Layer in the Martian Magnetosphere’, J. Geophys. Res. 101, 27,061.CrossRefADSGoogle Scholar
  65. Dubinin E. M., Sauer, K., Baumgartel, K. and Srivastava, K.: 1998, ‘Multiple Shocks Near Mars’, Earth Planets Space 50, 279.ADSGoogle Scholar
  66. Dubinin E. M. and Sauer, K.: 1999, ‘The Martian Magnetosphere-A Laboratory for Bi-ion Plasma Investigation’, Astrophys Space Sci. 264, 273.ADSGoogle Scholar
  67. Dubinin E. M., Sauer, K., McKenzie, J. F. and Chanteur, G.: 2002, ‘Nonlinear Waves and Solitons Propagating Perpendicular to the Magnetic Field in Bi-ion Plasma with Finite Plasma Pressure’, Nonlinear Processes Geophys. 9(2), 87.ADSGoogle Scholar
  68. Eastman, T. E., DeCoster, R. J. and Frank, L. A.: 1986, ‘Velocity Distributions of Ion Beams in the Plasma Sheet Boundary Layer’, in Ion Acceleration in the Magnetosphere and Ionosphere, Geophysical Monograph 38, AGU, pp. 117, Washington D.C..Google Scholar
  69. Eastwood, J. W.: 1972, ‘Consistency of Fields and Particle Motion in the 'speiser' Model of the Current Sheet’, Planetary Space Sci. 20, 1555.CrossRefADSGoogle Scholar
  70. Elphic, R. C. et al.: 1980, ‘Observations of the Dayside Ionopause and Ionosphere of Venus’, J. Geophys. Res. 85, 7679.ADSGoogle Scholar
  71. Eshleman, V. R.: 1970, ‘Atmospheres of Mars and Venus: A Review of Mariner 4 and 5 and Venera 4 Experiments’, Radio Sci. 5, 325.Google Scholar
  72. Fjeldbo, G. and Eshleman, V. R.: 1968, ‘The Atmosphere of Mars Analyzed by Integral Inversion of the Mariner 4 Occulation Data’, Planetary Space Sci. 16, 1035.CrossRefADSGoogle Scholar
  73. Fox, J. L. and Dalgarno, A.: 1979, ‘Ionization, Luminosity, and Heating of the Upper Atmosphere of Mars’, J. Geophys. Res. 84, 7315.ADSGoogle Scholar
  74. Fox, J. L.: 1993, ‘The Production and Loss of Nitrogen Atoms on Mars’, J. Geophys. Res. 98, 3297.ADSGoogle Scholar
  75. Fox, J. L.: 1996, in G. W. F. Drake (ed.), ‘Aeronomy’, Atomic, Molecular, and Optical Physics Handbook, 940, Am. Institute Phys. Press, Woodbury, NY.Google Scholar
  76. Fox, J. L.: 1997, ‘Upper Limits to the Outflow of Ions at Mars: Implications for Atmospheric Evolution’, Geophys. Res. Lett. 24, 2901.ADSGoogle Scholar
  77. Fox, J. L. and Stewart, A. I. F.: 1991, ‘The Venus Ultraviolet Aurora a Soft Electron Source’, J. Geophys. Res. 96, 9829.ADSGoogle Scholar
  78. Fox, J. L. and Hac, A.: 1997, ‘Spectrum of Hot O at the Exobase of the Terrestrial Planets’, J. Geophys. Res. 102, 24005.ADSGoogle Scholar
  79. Gan, L., Cravens, T. E. and Horanyi, M.: 1990, ‘Electrons in the Ionopause Boundary Layer of Venus’, J. Geophys. Res. 95, 19023.ADSGoogle Scholar
  80. Gombosi T. I. et al.: 1981, ‘The Role of Charge-exchange in the Solar Wind Absorption by Venus4’, Geophys. Res. Lett. 8, 1265.ADSGoogle Scholar
  81. Grard, R., Pedersen, A., Klimov, S., Savin, S., Skalsky, A., Trotignon, J. G. and Kennel, C.: 1989, ‘First Measurements of Plasma Waves near Mars’, Nature 341, 607.CrossRefADSGoogle Scholar
  82. Grard, R., Nairn, C., Pedersen, A., Klimov, S., Savin, S., Skalsky, A. and Trotignon, J. G.: 1991, ‘Plasma and Waves Around Mars’, Planetary Space Sci. 39, 89.CrossRefADSGoogle Scholar
  83. Grard, R., Skalsky, S. and Trotignon, J. G.: 1993, in T.J. Combosi (ed.), ‘Selected Wave and Plasma Features of the Martian Environment’, Plasma Environment of non-Magnetic Planets, COSPAR Colloq. Ser. 4, Pergamon, New York, pp. 321.Google Scholar
  84. Gringauz K. I., Bezrukhikh, V. V., Verigin, M. I. and Remizov, A. P.: 1975, ‘Studies of Solar Plasma Near Mars and Along the Earth-Mras Path, 3. Characteristics of Ion and Electron Components Measured on Satellite Mars-5’, Cosmic Res. 13, 107.Google Scholar
  85. Gringauz, K. I., Bezrukikh, V. V., Verigin, M. I. and Remizov, A. P.: 1976, ‘On Electron and Ion Component of Plasma in the Antisolar Part of Near-martian Space’, J. Geophys. Res. 81, 3349.ADSGoogle Scholar
  86. Gringauz, K. I.: 1976, ‘Interaction of Solar Wind with Mars as Seen by Charged Particle Traps on Mars 2, 3 and 5 Satellites’, Rev. Geophys. Space Phys. 14, 391.ADSGoogle Scholar
  87. Gringauz, K. I.: 1981, ‘A Comparison of the Magnetospheres of Mars, Venus and the Earth’, Adv. Space Res. 1(1), 5.ADSGoogle Scholar
  88. Haider, S. A., Kim, J., Nagy, A. F., Keller, C. N., Verigin, M. I., Gringauz, K. I., Shutte, N.M., Szego, K. and Kiraly, P.: 1992, ‘Calculated Ionization Rates, Ion Densities, and Aiglow Emission Rates Due to Precipitating Electrons in the Nightside Ionosphere of Mars’, J. Geophys. Res. 97, 10637.ADSGoogle Scholar
  89. Hanson, W. B., Sanatani, S. and Succaro, D. R.: 1977, ‘The Martian Ionosphere as Observed by the Viking Retarding Potential Analyzers’, J. Geophys. Res. 82, 4351.ADSGoogle Scholar
  90. Hanson, W. B. and Mantas, G. P.: 1988, ‘Viking Electron Temperature Measurements: Evidence for a Magnetic Field in the Martian Ionosphere’, J. Geophys. Res. 93, 7538.ADSGoogle Scholar
  91. Harned, D. S.: 1982, ‘Quasineutralhybrid Simulation of Macroscopic Plasma Phenomena’, J. Comp. Phys. 47, 452.ADSMATHGoogle Scholar
  92. Harnett, E. M. and Winglee, R. M.: 2003, ‘The Influence of a Mini-magnetopause on the Magnetic Pileup Boundary of Mars’ Geophys. Res. Lett., 30, 20, 2074, doi: 1029/2003 GLO17852.CrossRefGoogle Scholar
  93. Herman, J. R., Hartle, R. E. and Bauer, S. J.: 1970, ‘The Dayside Ionosphere of Venus’, Planetary Space Sci. 19, 443.ADSGoogle Scholar
  94. Hill, T. W.: 1975, ‘Magnetic Merging in a Collisionless Plasma’, J. Geophys. Res. 80, 4689.ADSGoogle Scholar
  95. Hodges, R. R.: 2000, ‘Distributions of Hot Oxygen for Venus and Mars’, J. Geophys. Res. 105, 6971.CrossRefADSGoogle Scholar
  96. Holmström, M., Barabash, S. and Kallio, E.: 2001, ‘X-ray Imaging of the Solar Wind-Mars Interaction’. Geophys. Res. Lett. 28, 1287.CrossRefADSGoogle Scholar
  97. Holmström, M., Barabash, S. and Kallio, E.: 2002, ‘Energetic Neutral Atoms at Mars I: Imaging of Solar Wind Protons’, J. Geophys. Res. 107(A10), 1277.CrossRefGoogle Scholar
  98. Ip, W.-H.: 1992a, ‘Ion Acceleration at the Current Sheet of the Martian Magnetosphere’, Geophys. Res. Lett. 19, 2095.ADSGoogle Scholar
  99. Ip W.-H.: 1992b, ‘Neutral Particle Environment of Mars: The Exosphere-plasma Interaction Effects’, Adv. Space Res. 12(9), 205.ADSGoogle Scholar
  100. Ip W.-H., Breus, R. K. and Zarnowiecki, T.: 1994, ‘Termination of the Solar Wind Flow Near Mars by Charge-exchange’, Planetary Space Sci. 42, 435.ADSGoogle Scholar
  101. Izakov, M. N. and Roste, O. Z.: 1996, ‘Martian Upper Atmosphere Structure Variation’, Cosmich. Issled. 34, N3.Google Scholar
  102. Israelevich P. L. et al.: 1994, ‘The Induced Magnetosphere of Comet Halley: Interplanetary Magnetic Field During Giotto Encounter’, J. Geophys. Res. 99, 6575.ADSGoogle Scholar
  103. Kallio, E., Koskinen, H., Barabash, S., Lundin, R., Norberg, O. and Luhmann, J. G.: 1994, ‘Proton Flow in the Martian Magnetosheath’, J. Geophys. Res. 99, 23547.CrossRefADSGoogle Scholar
  104. Kallio, E.: 1996, ‘An Empirical Model of the Solar Wind Flow Around Mars’ J. Geophys. Res. 101, 11133.CrossRefADSGoogle Scholar
  105. Kallio, E., Luhmann, J. G. and Barabash, S.: 1997, ‘Charge Exchange Near Mars: The Solar Wind Absorption and Energetic Neutral Atom Production’, J. Geophys. Res. 102, 22183.CrossRefADSGoogle Scholar
  106. Kallio, E. and Koskinen, H.: 1999, A Test Particle Simulation of Oxygen Ions and Solar Wind Protons Near Mars', J. Geophys. Res. 104, 557.CrossRefADSGoogle Scholar
  107. Kallio, E. and Barabash, S.: 2000, ‘On the Elastic and Inelastic Collisions Between the Precipitating Energetic Hydrogen Atoms and the Martian Atmospheric Neutrals’, J. Geophys. Res. 105, 24973.ADSGoogle Scholar
  108. Kallio, E. and Barabash, S.: 2001, ‘Atmospheric Effects of Precipitating Energetic Hydrogen Atoms to the Martian Atmosphere’, J. Geophys. Res. 106, 165–177.ADSGoogle Scholar
  109. Kallio, E. and Janhunen, P.: 2001, ‘Atmospheric Effects of Proton Precipitation in the Martian Atmosphere and its Connection to the Mars-Solar Wind Interaction’, J. Geophys. Res. 106, 5617.ADSGoogle Scholar
  110. Kallio, E. and Janhunen, P.: 2002, ‘Ion Escape from Mars in a Quasi-neutral Hybrid Model’, J. Geophys. Res. 107(A3), 10.1029/2001 JA000090.Google Scholar
  111. Kass, D. M. and Yung, Y. L.: 1995, ‘Loss of Atmosphere from Mars due to Solar Wind Sputtering’, Science 268, 697.ADSGoogle Scholar
  112. Kass, D. M. and Yung, Y. L.: 1996, ‘Response: The Loss of Atmosphere from Mars’, Science 274, 1932.ADSGoogle Scholar
  113. Keating G. M. et al.: 1998, ‘The Structure of the Upper Atmosphere of Mars. In situ Accelerometer Measurements from Mars Global Surveyor’, Science 279, 1672.CrossRefADSGoogle Scholar
  114. Kim, J., Nagy, A. F., Fox, J. L. and Cravens, T. E.: 1998, ‘Solar Cycle Variability of Hot Oxygen Atoms at Mars’, J. Geophys. Res. 103, 29339.ADSGoogle Scholar
  115. Kivelson, M. G., Khurana, K. K. and Volwerk, M.: 2002, ‘The Permanent and Inductive Magnetic Moments of Ganymede.’ Icarus 157, 2, 502.CrossRefGoogle Scholar
  116. Kliore, A. J. et al.: 1967, ‘Atmosphere and Ionosphere of Venus from Mariner 5 S-band Radio Occultation Experiment’, Science 158, 1683.ADSGoogle Scholar
  117. Kliore A. J., Cain, D. C., Fjeldbo, G., Seidel, B. L. and Rasool, S. I.: 1972, ‘Mariner-9 S-band Occultation Experiment: Initial Results on the Atmosphere and Topography of Mars’, Science 175, 313.ADSGoogle Scholar
  118. Kliore A. J., Fjeldbo, G., Seidel, B. L., Sykes, M. J. and Woiceshyn, P. M.: 1973, ‘S-band Radio Occultation Measurements of the Atmosphere and Topography of Mars with Mariner 9-Extended Mission Coverage of Polar and Intermediate Latitudes’, J. Geophys. Res. 78, 4331.Google Scholar
  119. Kliore, A. J.: 1992, ‘Radio Occultation Observations of the Ionospheres of Mars and Venus, Venus and Mars: Atmospheres, Ionospheres and Solar Wind Interactions’, 265, Geophys. Monograph 66, American Geophysical Union.Google Scholar
  120. Kotova, G. A., Verigin, M. I., Shutte, N. M., Remizov, A. P., Rosenbauer, H., Riedler, W., Schwingenschuh, K., Zhang, T.-L., Szego, K. and Tatrallyay, M.: 1997a, ‘Planetary Heavy Ions in the Magnetotail of Mars: Results of the TAUS and MAGMA Experiments Aboard PHOBOS 2’, Adv. Space Res. 20(2), 173.ADSGoogle Scholar
  121. Kotova, G., Verigin, M., Remizov, A., Shutte, N., Slavin, J., Szego, K., Tatrallyay, M., Rosenbauer, H., Livi, S., Richter, A., Schwingenschuh, K. and Zhang, T.-L.: 1997b, ‘The study of the Solar Wind Deceleration Upstream of the Martian Terminator Bow Shock’, J. Geophys. Res. 102, 2165.CrossRefADSGoogle Scholar
  122. Kotova, G. A., Verigin, M. I., Remizov, A. P., Shutte, N. M., Rosenbauer, H. et al.: 2000a, ‘Heavy Ions in the Magnetosphere of Mars: Phobos 2/TAUS Observations’, Phys. Chem. of the Earth (C) 25, 157.ADSGoogle Scholar
  123. Kotova G. A., Verigin, M. I., Remizov, A. P., Rosenbauer, H., Livi, S., Riedler, W., Schwingenschuh, K., Tatrallyay, M., Szego, K. and Apathy, I.: 2000b, ‘On the Possibility of Identifying of Heavy Ion Acceleration Processes in the Magnetotail of Mars’, Earth Planets Space 52.Google Scholar
  124. Krasnopolsky, V. A. and Gladstone, G. R.: 1996, ‘Helium on Mars: EUVE and PHOBOS Data and Implications for Mars'Evolution’, J. Geophys. Res. 101, 15765.CrossRefADSGoogle Scholar
  125. Krymskii, A. M.: 1992, in J. G. Luhmann, M. Tatrallyay, and R. O. Pepin (eds.), ‘An Interpretation of the Large Scale Ionospheric Magnetic Fields and the Altitude Distribution of the Ionosphere Plasma on the Dayside of Venus and Mars’, Venus and Mars, Atmospheres, Ionospheres, and Solar Wind Interactions, Geophys. Monograph 66, 289.Google Scholar
  126. Krymskii, A. M., Breus, T. K., Ness, N. F. and Acuña, M. H.: 2000, ‘The IMF Pile-up Regions near the Earth and Venus: Lessons for the Solar Wind — Mars Interaction’, Space Sci. Rev. 92, 535.CrossRefADSGoogle Scholar
  127. Krymskii, A. M., Breus, T. K., Ness, N. F., Acuña, M. H., Connerney, J. E. P., Crider, D. H., Mitchell, D. L. and Bauer, S. I.: 2002, ‘Structure of the Magnetic Field Flux Connected with Crustal Magnetization and Top-side Ionosphere of Mars’, J. Geophys. Res. 107 (A9), 1245, doi: 10.1029/2001 JAO000239.CrossRefGoogle Scholar
  128. Kumar, S. and Hunten, D. M.: 1974, ‘An Ionospheric Model With an Exospheric Temperature of 350 K’, J. Geophys. Res. 79, 2529.Google Scholar
  129. Leblanc, F. and Johnson, R. E.: 2002, ‘Role of Molecular Species in Pickup Ion Sputtering of the Martian Atmosphere’, J. Geophys. Res. 107(E2), 10.1029/2000JE001473.Google Scholar
  130. Lichtenegger, H., Schwingenschuh, K., Dubinin, E. and Lundin, R.: 1995, ‘Particle Simulation in the Martian Magnetotail’, J. Geophys. Res. 21659.Google Scholar
  131. Lichtenegger, H., Dubinin, E. and Ip, W.-H.: 1997, ‘The Depletion of the Solar Wind near Mars’, Adv. Space Res. 20(2), 143.ADSGoogle Scholar
  132. Lichtenegger, H. and Dubinin, E.: 1998, ‘Model Calculations of the Planetary Ion Distribution in the Martian Tail’, Earth Planets Space 50, 445.ADSGoogle Scholar
  133. Lichtenegger, H. and Dubinin, E.: 1999, ‘Charge-exchange in the Magnetosheath of Mars’, Adv. Space Res..Google Scholar
  134. Lichtenegger, H., Dubinin, E., Schwingenschuh, K. and Riedler, W.: 2000, ‘The Martian Plasma Environment: Model Calculations and Observations’, Adv. Space Res. 26, 1623.ADSGoogle Scholar
  135. Lichtenegger, H., Lammer, H. and Stumptner, W.: 2002, ‘Energetic Neutral Atoms at Mars III: Flux and Energy Distribution of Planetary Energetic H atoms’, J. Geophys. Res. 107, (A10), 1279, doi: 10.1029/2001 JA000322.CrossRefGoogle Scholar
  136. Liu, Y., Nagy, A. F., Clinton, P. T., Groth, D. L., DeZeeuw, L. and Gombosi, T. I.: 1999, ‘3D multi-fluid MHD Studies of the Solar Wind Interaction with Mars’, Geophys. Res. Lett. 26, 2689.ADSGoogle Scholar
  137. Liu, Y, Nagy, A. F., Gombosi, T. I., DeZeeuw, D. L. and Powell, K. G.: 2001, ‘The Solar Wind Interaction with Mars: Results of Three-dimensional Three-species MHD Studies’, Adv. Space Res. 27, 1837.ADSGoogle Scholar
  138. Luhmann, J. G.: 1986, ‘The Solar-Wind Interaction with Venus’, Space Sci. Rev. 44(3–4, 241.ADSGoogle Scholar
  139. Luhmann, J. G. and Cravens, T. E.: 1991, ‘Magnetic Fields in the Ionosphere of Venus’, Space Sci. Rev. 55, 201.CrossRefADSGoogle Scholar
  140. Luhmann, J. G. and Kozyra, J. U.: 1991, ‘Dayside Pickup Oxygen Ion Precipitation at Venus and Mars: Spatial Distributions, Energy Deposition and Consequences’, J. Geophys. Res. 96, 5457.ADSGoogle Scholar
  141. Luhmann, J. G. et al.: 1987, ‘Characteristics of the Mars-like Limit of the Venus — Solar Wind Interaction’, J. Geophys. Res. 92, 8545.ADSGoogle Scholar
  142. Luhmann, J. G., Russell, C. T., Schwingenschuh, K. and Yeroshenko, Ye.: 1991, ‘A Comparison of Induced Magnetotails of Planetary Bodies: Venus, Mars, and Titan’, J. Geophys. Res. 95, 11199.ADSGoogle Scholar
  143. Luhmann, J. G. et al.: 1992, ‘Evolutionary Impact of Sputtering of the Martian Atmosphere by O+ Pickup Ions’, Geophys. Res. Lett. 19, 2151.ADSGoogle Scholar
  144. Lundin, R., Zakharov, A., Pellinen, R., Borg, H., Hultqvist, B., Pissarenko, N., Dubinin, E. M., Barabash, S. V., Liede, I. and Koskinen, H.: 1989, ‘First Measurements of the Oonospheric Plasma Escape from Mars’, Nature, 341, 6243, 609.CrossRefGoogle Scholar
  145. Lundin, R. et al.: 1990, ‘Plasma Composition Measurements of Martian Magnetosphere Morphology’, Geophys. Res. Lett. 17, 877.ADSGoogle Scholar
  146. Lundin, R. and Dubinin, E. M.: 1992, ‘Phobos-2 Results on the Ionospheric Plasma Escape from Mars’, Adv. Space Res. 12(9), 255.ADSGoogle Scholar
  147. Lundin, R. et al.: 1993, in T. I. Gombosi (ed.), ‘ASPERA Observations of Martian Magnetospheric Boundaries’, Plasma Environments of Non-magnetic Planets Pergamon Press, p. 311.Google Scholar
  148. Ma, Y., Nagy, A. A. F., Hansen, K. C., DeZeeuw, D. L., Gombosi, T. I. and Powell, K. G.: 2002, ‘3D Multi-fluid MHD Studies of the Solar Wind Interaction with Mars in the Presence of Crustal Fields’, J. Geophys. Res. 107, (in press).Google Scholar
  149. Ma, Y., Nagyy, A. F. and Sokolov, I. V. and K. C. Hansen: 2004, 3D, Multispecies, High Spatial Presolution MHD Studies of the Solar Wind Interaction with Mars, J. Geophys. Res., 109, 2003 JAO10367.CrossRefGoogle Scholar
  150. Mahajan, K. K. and Mayr, H. G.: 1989, ‘Venus Ionopause During Solar Minimum’, Geophys. Res. Lett. 16, 1477.ADSGoogle Scholar
  151. Mantas, G. P. and Hanson, W. B.: 1979, ‘Photoelectron Fluxes in the Martian Ionosphere’, J. Geophys. Res. 84, 369.ADSGoogle Scholar
  152. Marubashi, K., Grebowsky, J. M., Taylor, H. A. et al.: 1985, ‘Magnetic Field in the Wake of Venus and the Formation of Ionospheric Holes’, J. Geophys. Res. 90, 1385.ADSGoogle Scholar
  153. Mazelle, C., Rème, H., Sauvaud, J. A., d'Uston, C., Carlson, C. W., Anderson, K. A., Curtis, D. W., Lin, R. P., Korth, A., Mendis, D. A., Neubauer, F. M., Glassmeier, K. H. and Raeder, J.: 1989, ‘Analysis of Suprathermal Electron Properties at the Magnetic Pile-up Boundary of Comet P/Halley’, Geophys. Res. Lett. 16(9), 1035.ADSGoogle Scholar
  154. Mazelle, C, Rème, H., Neubauer, F. M. and Glassmeier, K.-H.: 1995, ‘Comparison of the Main Magnetic and Plasma Features in the Environments of Comets Grigg-skjellerup and Halley’, Adv. Space Res 16, (4)41–(4)45.Google Scholar
  155. Mazelle C., Vignes, D., Rème, H., Sauvaud, J. A., d'Uston, C., Acuña, M. H., Connerney, J. E. P., Wasilewski, P., Lin, R. P., Mitchell, D. L., Anderson, K. A., Carlson, C.W., McFadden, J., Curtis, D. W., Cloutier, P. A., Crider, D. H., Law, C. C., Bauer, S. J., Ness, N. F. and Winterhalter, D.: 1998, ‘Analysis of the Magnetic Pile-up’ Boundary at Mars, Eos Trans. AGU Fall Meet. Suppl., Abstract P12A-09.Google Scholar
  156. Mazelle, C., Bertucci, C., Rème, H., Mitchell, D. L., Lin, R. P., Vignes, D., Crider, D. H., Acuña, M. H., Connerney, J. E. P., Sauer, K., Chen, Y., Cloutier, P. A., Ness, N. F., and Winterhalter, D.: 2002, ‘The Magnetic Pileup Boundary at Mars: A Comet-like Feature in the Interaction of the Planet Atmosphere with the Solar Wind’, in preparation.Google Scholar
  157. McComas D. J., Spence, H. E., Russell, C. T. et al.: 1986, ‘The Average Magnetic-field Draping and Consistent Plasma Properties of the Venus Magnetotail’. J Geophys Res. 91, 7939.ADSGoogle Scholar
  158. McElroy, M. B.: 1969, ‘Structure of the Venus and Mars Atmospheres’, J. Geophys. Res. 74, 29.ADSGoogle Scholar
  159. McElroy, M. B. and McConnell, J. C.: 1971, ‘Atomic Carbon in the Atmospheres of Mars and Venus’, J. Geophys. Res. 76, 6674.Google Scholar
  160. McElroy, M. B. and McConnell, J. C.: ‘Dissociation of CO2 in the Martian Atmosphere’, J. Atmos. Sci. 28, 1437.Google Scholar
  161. McKenzie J. F., Marsch, E., Baumgartel, K. and Sauer, K.: 1993, ‘Wave and Stability Properties of Multi-ion Plasmas with Applications to Winds and Flows’, Annal. Geophysikae 11, 341.ADSGoogle Scholar
  162. McKenzie J. F., Sauer, K. and Dubinin, E.: 2001, ‘Stationary Waves in a Bi-ion Plasma Transverse to the Magnetic Field’, J. Plasma Physics 65, 197.ADSGoogle Scholar
  163. Mellott, M. M. and Livesey, W. A.: 1987, ‘Shock Overshoots Revisited’, J. Geophys. Res. 92, 13661.ADSGoogle Scholar
  164. Michel, F. C.: 1971, ‘Solar-wind-induced Mass Loss from Magnetic Field-free Planets’, Planetary Space Sci. 19, 1580.CrossRefADSGoogle Scholar
  165. Mitchell, D. L. et al.: 2000, ‘Oxygen Auger Electrons Observed in Mars' Ionosphere’, Geophys. Res. Lett. 27, 1827.Google Scholar
  166. Mitchell, D. L., Lin, R. P., Mazelle, C., Rème, H., Cloutier, P. A., Connerney, J. E. P., Acuña, M. H. and Ness, N. F.: 2001, ‘Probing Mars' Crustal Magnetic Field and Ionosphere with the MGS Electron Reflectometer’, J. Geophys. Res. 106, 23419.ADSGoogle Scholar
  167. Mitchell, D. L., Lin, R. P., Rème, H., Cloutier, P. A., Connerney, J. E. P., Acuña, M. H. and Ness, N. F.: 2002, ‘Probing Mars’ Crustal Magnetic Field and Ionosphere with the MGS Electron Reflectometer, Lunar and Planetary Science XXXIII.Google Scholar
  168. Motschmann, U., Sauer, K., Roatsch, T. and McKenzie, J. F.: 1991, ‘Subcritical Multiple-ion Shocks’, J. Geophys. Res. 96, 13841.ADSGoogle Scholar
  169. Möhlmann, D. et al.: 1991, ‘The Question of an Internal Martian Magnetic Field’, Planetary Space Sci. 39, 83.CrossRefADSGoogle Scholar
  170. Möhlmann D.: 1992, ‘The Question of a Martian Planetary Magnetic Field’, Adv. Spave. Res. 12(8), 213.ADSGoogle Scholar
  171. Mura, A., Milillo, A., Orsini, S., Kallio, E. and Barabash, S.: 2002, ‘Energetic Neutral Atoms at Mars II: Energetic Neutral Atom Production near Phobos’, J. Geophys. Res. 107(A10), 1278.CrossRefGoogle Scholar
  172. Nagy, A. F., Cravens, T. E., Smith, S. G., Taylor, H. A. and Brinton, H. C.: 1980, ‘Model Calculations of the Dayside Ionosphere of Venus: Ionic Composition’, J. Geophys. Res. 85, 7795.ADSGoogle Scholar
  173. Nagy, A. F., Gombosi, T. I., Szego, K., Sagdeev, R. Z., Shapiro, V. D. and Shevchenko, V. I.: 1990, ‘Venus Mantle-Mars Planetosphere: What are the Similarities and Differences’, Geophys. Res. Lett. 17, 865.ADSGoogle Scholar
  174. Nagy, A. F. and Cravens, T. E.: 1997, in S. W. Bougher, D. M. Hunten and R. J. Phillips (Eds.), ‘Ionosphere: Energetics’, Venus II p. 189.Google Scholar
  175. Nagy, A. F. and Cravens, T. E.: 2002, in M. Mendillo, A. Nagy and H. Waite (Eds.), ‘Solar System Ionospheres’, Atmospheres in the Solar System: Comparative Aeronomy p. 39, Geophys. Mon. 130, American Geophysical Union.Google Scholar
  176. Ness, N. F., Acuña, M. H., Connerney, J., Wasilewski, P., Mazelle, C., Sauvaud, J., Vignes, D., d'Uston, C., Rème, H., Lin, R., Mitchell, D. I., McFadden, J., Curtis, D., Cloutier, P. and Bauer, S.: 1999, ‘MGS Magnetic Fields and Electron Reflectometer Investigation: Discovery of Paleomagnetic Fields due to Crustal Remnance’, Adv. Space Res. 23(11), 1876.ADSGoogle Scholar
  177. Ness, N. F. et al.: 2000, ‘Effects of Magnetic Anomalies Discovered at Mars on the Structure of the Martian Ionosphere and Solar Wind Interaction as Follows from Radio Occultation Experiment’ J. Geophys. Res. 105, 15991.CrossRefADSGoogle Scholar
  178. Neubauer, F. M.: 1987, ‘Giotto Magnetic-field Results on the Boundary of the Pile-up Region and the Magnetic Cavity’, Astron. Astropys. 187, 73.ADSMathSciNetGoogle Scholar
  179. Neubauer, F. M., Marschall, H., Pohl, M., Glassmeier, K.-H., Musmann, G., Mariani, F., Acuña,. H., Burlaga, L. F., Ness, N. F., Wallis, M. K., Schmidt, H. U. and Ungstrup, E.: 1993, ‘First Results from the Giotto Magnetometer Experiment During the P/Grigg-Skjellerup Encounter’, Astron. Astrophys. 268, L5–L8.ADSGoogle Scholar
  180. Nier, A. J. and McElroy, M. B.: 1977, ‘Composition and Structure of the Mars' Upper Atmosphere: Results from the Neutral Mass Spectrometers on Viking 1 and 2’, J. Geophys. Res. 82, 4241.ADSGoogle Scholar
  181. Norberg, O., Barabash, S. and Lundin, R.: 1993, in T. Gombosi (ed.), ‘Observations of Molecular Ions in the Martian Plasma Environment’, Plasma Environments of Non-magnetic Planets, COSPAR Colloquia Series, 4, p. 299.Google Scholar
  182. Paxton, L. J. and Anderson, D. E.: 1991, ‘Far Ultraviolet Remote Sensing of Venus and Mars’, in Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions, 112, Geophysical Monograph 66, American Geophysical Union, Washington DC.Google Scholar
  183. Pedersen A., Nairn, C., Grard, R. and Schwingenschuh, K.: 1991, ‘Deviation of Electron Densities from Differential Potential Measurements Upstream and Downstream of the Bow Shock and in the Magnetosphere of Mars’, J. Geophys. Res. 96, 11243.ADSGoogle Scholar
  184. Phillips, J. L., Luhmann, J. G. and Russell, C. T.: 1984, ‘Growth and Maintenance of Large-scale Magnetic Fields in the Dayside of Venus’, J. Geophys. Res. 89, 10676.ADSGoogle Scholar
  185. Powell et al.: 1999, ‘A solution-adaptive Upwind Scheme for Ideal Magnetohydrodynamics’, J. Comp. Phys. 154, 284.ADSMATHMathSciNetGoogle Scholar
  186. Rasool, S. I. and Stewart, R.W.: 1971, ‘Results and Interpretation of S-band Occultation Experiments n Mars and Venus’, J. Atmos. Sci. 28, 869.CrossRefADSGoogle Scholar
  187. Rème, H., Mazelle, C., Sauvaud, J. A., d'Uston, C., Froment, F., Lin, R. P., Anderson, K. A., Carlson, C. W., Larson, D. E., Korth, A., Chaizy, P. and Mendis, D.A.: 1993, ‘Electron Plasma Environment at Comet Grigg-Skjellerup: General Observations and Comparison with the Environment at Comet Halley’, J. Geophys. Res. 98, 20965.Google Scholar
  188. Riedler, W,., Mohlmann, D., Oraevsky, V. N., Schwingenschuh, K., Eroshenko, Ye., Rustenbach, J., Aydogar, Oe., Berghofer, G., Lichtenegger, H., Delva, M., Schelch, G., Pirsch, K., Fremuth, G., Steller, M., Arnold, H., Raditsch, T., Ayster, U., Fornacon, K.-H., Schenk, H. J., Michaelis, H., Motschmann, U., Roatsch, T., Sauer, K., Schroter, R., Kurths, J., Lenners, D., Linthe, J., Kobzev, V., Styashkin, V., Achache, J., Slavin, J., Luhmann, J. G. and Russell, C. T.: 1989, ‘Magnetic Fields Near Mars: First Results’, Nature 341, 604.CrossRefADSGoogle Scholar
  189. Roelof, E. C. and Skinner, A. J.: 2000, ‘Extraction of Ion Distributions from Magnetospheric and EUV Images’, Space Sci. Rev. 91, 437.CrossRefADSGoogle Scholar
  190. Rohrbaugh, R. P., Nisbet, J. S., Blauler, E. and Hesman, J. R.: 1979, ‘The Effect of Energetically Produced O2+ on the Ion Temperatures of the Martian Thermosphere’, J. Geophys. Res. 84, 3327, 1979.ADSGoogle Scholar
  191. Rosenbauer, H., N. Shutte, I. Apathy, A. Galeev, K. Gringauz, H. Gruenwaldt, P. Hemmerich, K. Jockers, P. Kiraly, G. Kotova, S. Livi, E. Marsh, A. Richter, W. Riedler, A. Remizov, R. Schwenn, K. Schwingenschuh, M. Steller, K. Szego, M. Verigin, and M. Witte, Ions of martian origin and plasma sheet in the martian magnetotail: Initial results of TAUS experiment, Nature, 341, 612, 1989.CrossRefADSGoogle Scholar
  192. Rosenbauer, H., M. Verigin, G. Kotova, S. Livi, A. Remizov, W. Riedler, K. Schwingenschuh, N. Shutte, J. Slavin, K. Szego, M. Talrallyay and T.-L. Zhang, On the Correlation of the Magnetic Field in the Martian Magnetotail to the Solar Wind Parameters, J. Geophys. Res. 99, 17199.Google Scholar
  193. Russell, C. T., Hoppe, M. M. and Livesay, W. A.: 1982, ‘Overshoots in Planetary Bow Shocks’, Nature 296, 45.ADSGoogle Scholar
  194. Russell, C. T.: 1985, in B. Tsurutani and R. Stone (eds) Planetary bow shocks, Collisionless Shocks in the Heliosphere: Reviews of Current Research, Geophysical Monograph 35, Washington DC, p. 109.Google Scholar
  195. Russell, C. T. et al.: 1988, ‘Solar and Interplanetary Control of the Location of the Venus Bow Shock’, J. Geophys. Res. 93, 5461.ADSGoogle Scholar
  196. Sagdeev, R. Z. and Zakharov, A. V.: 1989, ‘Brief History of the Phobos Mission’, Nature 341, 585.CrossRefADSGoogle Scholar
  197. Sauer K., Baumgärtel, K., Axnäs, I. and Brenning, N.: 1990, ‘A Fluid Simulation of the AMPTE Solar Wind Lithium Release’, Adv. Space Res. 10, 95.ADSGoogle Scholar
  198. Sauer, K., Roatsch, T., Motschmann, U., Schwingenschuh, K., Lundin, R., Rosenbauer, H. and Livi, S.: 1992, ‘Observations of Plasma Boundaries and Phenomena around Mars with Phobos 2’, J. Geophys. Res. 97, 6227.ADSGoogle Scholar
  199. Sauer, K., Roatsch, T., Baumgartel, K. and McKenzie, J. F.: 1992, ‘Critical Density Layer as Obstacle at Solar Wind-Exosphere Ion Interaction’, Geophys. Res. Lett. 19, 645.ADSGoogle Scholar
  200. Sauer, K., Bogdanov, A. and Baumgartel, K.: 1994, ‘Evidence of an Ion Composition Boundary (Protonopause) in Bi-Ion Fluid Simulations of Solar Wind Mass Loading’, Geophys. Res. Lett. 21, 2255.CrossRefADSGoogle Scholar
  201. Sauer, K., Bogdanov, A. and Baumgartel, K.: 1995, ‘The Protonopause—an Ion Composition Boundary in the Magnetosheath of Comets, Venus and Mars’, Adv. Space Res. 16(4), 153.ADSGoogle Scholar
  202. Sauer, K., Dubinin, E., Baumgartel, K. and Bogdanov, A.: 1996, ‘Bow-Shock 'splitting' in Bi-Ion Flows’, Geophys. Res. Lett. 23, 3643.ADSGoogle Scholar
  203. Sauer, K., Dubinin, E. and Baumgartel, K.: 1998, ‘Nonlinear MHD Waves and Discontinuities in the Martian Magnetosheath. Observations and 2D bi-ion MHD Simulations’, Earth Planets Space 50, 793.ADSGoogle Scholar
  204. Sauer, K., McKenzie, E. J. F. and Dubinin, E.: 2000, in M. Verheest, M. Goosens, M. A. Hellberg and R. Bharuthram (eds), Waves and nonlinear structures in bi-ion plasmas, in: Waves in Dusty, Solar and Space Plasmas Vol. 537 AIP Conference Proceedings, p. 327, American Institute of Ophysics, Melville, N.Y..Google Scholar
  205. Sauer, K. and Dubinin, E.: 2000, ‘The Nature of the Martian Obstacle Boundary’, Adv. Space Res. 26(10), 1633.ADSGoogle Scholar
  206. Savich, N. A. et al.: 1979, in N. F. Ness (ed) The nighttime ionosphere of Mars from Mars 4 and 5 radio occultation dual-frequency measurements, Solar Wind Interaction with the Planets Mercury, Venus, and Mars, NASA Special Publication 397, Washington, DC.Google Scholar
  207. Schunk, R. W. and Nagy, A. F.: 2000, Ionospheres, Cambridge University Press.Google Scholar
  208. Schwingenschuh, K., Riedler, W., Yeroshenko, Y. et al.: 1987, ‘Magnetic-Field Draping in the Comet Halley Coma-Comparison of Vega Observations with Computer-Simulations’, Geophys. Res. Lett. 14, 640.ADSGoogle Scholar
  209. Schwingenschuh, K., Riedler, W., Lichtenegger, H., Yeroshenko, Ye., Sauer, K., Luhmann, J. G., Ong, M. and Russell, C. T.: 1990, ‘Martian Bow Shock: Phobos Observations’, Geophys. Res. Lett. 17, 889.ADSGoogle Scholar
  210. Schwingenschuh, K. et al.: 1992a, ‘The Martian Magnetic Field Environment: Induced or Dominated by an Intrincic Magnetic Field’, Adv. Space Res. 12(9), 213.ADSGoogle Scholar
  211. Schwingenschuh, K. a. W. R.: 1992b, in H. K. Biernat, G. A. Bachmaier, S. J. Bauer and R. P. Rijnbeek (eds), Solar wind interaction with nonmagnetic and weakly magnetized bodies in the solar system. Proceedings of the Workshop ‘The Solar Wind-Magnetosphere System’, 247.Google Scholar
  212. Shabanskiy, V. P.: 1972, Phenomena in the Near Terrestrial Space, Nauka, pp. 167–190, Moscow (in Russian).Google Scholar
  213. Shinagawa, H., Cravens, T. E. and Nagy, A. F.: 1987, ‘A One-Dimensional Time-Dependent Model of the Magnetized Ionosphere of Venus’, J. Geophys. Res. 92, 7317.ADSGoogle Scholar
  214. Shinagawa, H. and Cravens, T. E.: 1988, A One-Dimensional Multi-Species Magnetohydrodynamic Model of the Dayside Ionosphere of Venus', J. Geophys. Res. 93, 11263.ADSGoogle Scholar
  215. Shinagawa, H. and Cravens, T. E.: 1989, ‘A One-Dimensional Multispecies Magneto Hydodynamical Model of the Dayside Ionosphere of Mars’, J. Geophys. Res. 94, 6506.ADSGoogle Scholar
  216. Shinagawa, H. and Cravens, T. E.: 1992, ‘The Ionospheric Effects of a Weak Intrinsic Magnetic Field at Mars’, J. Geophys. Res. 97, 1027.ADSGoogle Scholar
  217. Shinagawa, H.: 1996, ‘A Two-Dimensionsl Model of the Venus Ionosphere, 1. Unmagnetized Ionosphere’, J. Geophys. Res. 101, 26911.ADSGoogle Scholar
  218. Shutte, N. M. et al.: 1989, ‘Observations of Electron and Ion Fluxes in the Vicinity of Mars with the HARP Spectrometer’, Nature 341, 614.CrossRefADSGoogle Scholar
  219. Slavin, J. A., Elphic, R. C. and Russell, C. T.: 1979, ‘A Comparison of Pioneer Venus and Venera Bow Shock Observations: Evidence for a Solar Cycle Variation’, Geophys. Res. Lett. 6, 905.ADSGoogle Scholar
  220. Slavin, J. A. and Holzer, R. E.: 1982, ‘The Solar Wind Interaction with Mars Revisited’, J. Geophys. Res. 87, 10285.ADSGoogle Scholar
  221. Slavin, J. A., Holzer, R. E., Spreiter, J. R., Stahara, S. S. and Chaussee, D. S.: 1983, Solar Wind Flow about the Terrestrial Planets, 2. Comparisons with Gasdynamic Theory and Implications for Solar Planetary Interactions', J. Geophys. Res. 88, 19.ADSGoogle Scholar
  222. Slavin, J. A. and Holzer, R. E.: 1983, ‘Solar Wind Flow about the Terrestrial Planets 2, Comparison with Gasdynamic Theory and Implications for Solar-Planetary Interactions’, J. Geophys. Res. 88, 19.ADSGoogle Scholar
  223. Slavin, J. A., Smith, E. J. and Intriligator, D. S.: 1984, ‘A Comparative Study of Distant Magnetotail Structure at Venus and Earth’, Geophys. Res. Lett. 11, 1074.ADSGoogle Scholar
  224. Slavin, J. A., Smith, E. J., Tsurutani, B. T. et al.: 1986, ‘Giacobini-Zinner Magnetotail: ICE Magnetic Field Observations’, Geophys. Res. Lett. 13, 283.ADSGoogle Scholar
  225. Slavin, J. A., Schwingenschuh, K., Riedler, W. and Yeroshenko, Ye.: 1991, ‘The Solar Wind Interaction with Mars: Mariner 4, Mars 2, Mars 3, Mars 5 and Phobos 2 Observations of Bow Shock Position and Shape’, J. Geophys. Res. 96, 11235.ADSGoogle Scholar
  226. Speiser, T. W.: 1965, ‘Particle Trajectories in Model Current Sheets, 1.Analytical Solutions’, J. Geophys. Res. 70, 4219.ADSGoogle Scholar
  227. Spenner, K., Knudsen, W. C., Miller, K. L., Novak, V., Russell, K. L. and Elphic, R. C.: 1980, ‘Observation of the Venus Mantle, the Boundary Region Between Solar Wind and Ionosphere’, J. Geophys. Res. 85, 7655.ADSGoogle Scholar
  228. Spreiter, J. R. and Briggs, B. R.: 1962, ‘Theoretical Determination of the Form of the Boundary of the Solar Corpuscular Stream Produced by the Interaction with the Magnetic Dipole Field of the Earth’, J. Geophys. Res. 67, 37.ADSGoogle Scholar
  229. Spreiter, J. R. and Stahara, S. S.: 1980: ‘A New Predictive Model for Determining Solar Wind — Terrestrial Planet Interactions’, J. Geophys. Res. 85(6), 769.Google Scholar
  230. Stewart, A. I.: 1972, ‘Mariner 6 and 7 Ultraviolet Ultraviolet Spectrometer Experiment: Implications of CO2+, CO, and O Airglow’, J. Geophys. Res. 77, 54.Google Scholar
  231. Stewart, A. I. and Hanson, W. B.: 1982, in A. Kliore (ed) Mars Upper Atmosphere: Mean and Variations, in the Mars Reference Atmosphere, Adv. Space Res. 2, 87.Google Scholar
  232. Szegö, K., Glassmeier, K. H., Brinca, A., Bingham, R., Cravens, T., Fischer, C., Fisk, L., Gombosi, T., Harendel, G., Lee, M., Mazelle, C., Moebius, E., Motschmann, U., Isenberg, P., Sauer, K., Shapiro, V., Schwadron, N., Tsurutani, B. and Zank, G.: 2000, ‘Physics of Mass Loaded Plasma’, Space Sci. Rev. 94, 429.CrossRefADSGoogle Scholar
  233. Szego, K.: 2001, ‘Present Understanding of the Dayside Mantle of Venus and Mars’, Adv. Space Res. 28, 841.ADSGoogle Scholar
  234. Trotignon, J. G., Grard, R. and Slavin, S.: 1991, ‘Plasma Wave System Measurements of the Martian Bow Shock from the Phobos 2 Spacecraft’, J. Geophys. Res. 96, 11253.ADSGoogle Scholar
  235. Trotignon, J. G., Grard, R. and Skalsky, A.: 1993, ‘Position and Shape of the Martian Bow Shock: the Phobos 2 Plasma Wave System Observations’, Planetary Space Sci. 41, 189.CrossRefADSGoogle Scholar
  236. Trotignon, J. G., Dubinin, E., Grard, R., Barabash, S. and Lundin, R.: 1996, ‘Martian Planetopause as Seen by the Plasma Wave System Onboard Phobos 2’, J. Geophys. Res. 101, 24965.CrossRefADSGoogle Scholar
  237. Vaisberg, O. L., Bogdanov, A. V., Smirnov, V. N. and Romanov, S. A.: 1975, ‘Initial Results of Ion Flux Measurements by RIEP-2801M Instrument on Mars-4 and Mars-5’, Cosmic Res. 13, 112.Google Scholar
  238. Vaisberg, O. L.: 1976, in D. J. Williams (ed) Mars-plasma environment, Physics of Solar Planetary Environments, Vol. 2. AGU, Boulder, Colorado, 854.Google Scholar
  239. Vaisberg, O. L.: 1992, in J. G. Luhmann, M. Tatrallyay and R. O. Pepin (eds), The solar wind interaction with Mars: A review of results from early soviet missions to Mars, in Venus and Mars: Atmospheres, Ionospheres, and Solar wind Interactions, Geophys. Monogr. 66, NW, Washington, p. 311.Google Scholar
  240. Vasiliev, M. B., Vyshlov, A. S., Kolosov, M. A., Savich, A. I. et al.: 1975, ‘Preliminary Results of the Two Frequency Radio Sounding of the Martian Ionosphere by Using the Mars Interplanetary Stations in 1974’, Kosmicheskie issledovanija 13, 48 (in Russian).Google Scholar
  241. Verigin, M. I., Shutte, N. M., Galeev, A. A., Gringauz, K. I., Kotova, G. A., Remizov, A. P., Rosenbauer, H., Hemmerich, P., Livi, S., Richter, A. K., Apathy, I., Szego, K., Riedler, W., Schwingenschuh, K., Stellar, M. and Yeroshenko, Ye. G.: 1991, ‘Ions of Planetary Origin in the Martian Magnetosphere (Phobos 2/Taus Experiment)’, Planetary Space Sci. 39, 131.CrossRefADSGoogle Scholar
  242. Verigin, M. I., Gringauz, K. I., Shutte, N. M., Haider, S. A., Szgo, K., Kiraly, P., Nagy, A. F. and Gombosi, T. I.,: 19916, J. Geophys. Res., 96, 19307.Google Scholar
  243. Verigin, M. I., Gringauz, K. I., Kotova, G. A., Remizov, A. P., Shutte, N. M., Richter, A., Riedler, W., Schwingenschuh, K., Szego, K., Apathy, I. and Tatrallyay, M.: 1993, ‘The Dependence of the Martian Magnetopause and Bow Shock on Solar Wind Ram Pressure According to Phobos 2 TAUS Ion Spectrometer Measurements’, J. Gephys. Res. 98, 1303.ADSGoogle Scholar
  244. Verigin, M., Kotova, G., Shutte, N., Remizov, A., Szego, K., Tatrallyay, M., Apathy, I., Rosenbauer, H., Livi, S., Richter, A. K. Schwingenschuh, K., Zhang, T.-L., Slavin, J. and Lemaire, J.: 1997, ‘Quantitative Model of the Martian Magnetopause Shape and its Variation with the Solar Wind Ram Pressure Based on Phobos 2 Observations’, J. Geophys. Res. 102, 2147.CrossRefADSGoogle Scholar
  245. Verigin, M. I., Kotova, G. A., Remizov, A. P., Styazhkin, V. A., Shutte, N. M., Zhang, T.-L., Riedler, W., Rosenbauer, H., Szego, K., Tatrallyay, M. and Schwingenschuh, K.: 1999, ‘Shape and Location of Planetary Bow Shocks’, Cosmic Res. 37, 34.ADSGoogle Scholar
  246. Verigin, M. I., Kotova, G. A., Remizov, A. P., Szegö, K., Tátrallyay, M., Slavin, J., Rosenbauer, H., Livi, S., Riedle, W., Schwingenschuh, K. and Zhang, T.-L.: 2001, ‘Evidence of the Influence of Equatorial Martian Crustal Magnetization on the Position of the Planetary Magnetotail Boundary by Phobos 2 Data’, Adv. Space Res. 28(6), 885.ADSGoogle Scholar
  247. Vignes, D. et al.: 2000, ‘The Solar Wind interaction with Mars: Locations and Shapes of the Bow Shock and the Magnetic Pile-up Boundary from the Observations of the MAG/ER Experiment Onboard Mars Global Surveyor’, Geophys. Res. Lett. 27, 49.CrossRefADSGoogle Scholar
  248. Vignes, D., Acuña, M. H., Connerney, J. E. P., Crider, D. H., Mazelle, C. and Rème, H.: 2002, ‘Factors Controlling the Location of the Bow Shock at Mars’, Geophys. Res. Lett. 29, 9, 42, 1328 doi: 10.029/2001 GL014513.CrossRefGoogle Scholar
  249. Wallis, M. K.: 1978, ‘Exospheric Density and Escape Fluxes of Atomic Isotopes on Venus and Mars’, Planetary Space Sci. 26, 949.ADSMathSciNetGoogle Scholar
  250. Whitten, R. C.: 1970, ‘The Daytime Upper Atmosphere of Venus’, J. Geophys. Res. 75, 3707.Google Scholar
  251. Yeroshenko, Ye., Riedler, W., Schwingenschuh, K., Luhmann, J. G., Ong, M. and Russell, C. T.: 1990, ‘The Magnetotail of Mars: Phobos 2 Observations’, Geophys. Res. Lett. 17(6), 885–888.ADSGoogle Scholar
  252. Zakharov, A. V.: 1992, in J. G. Luhmann, M. Tatrallyay and R. Pepin (eds), The plasma environment of Mars: Phobos mission results, Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions, p. 327, Geophysical Monograph 66, Washington, D.C..Google Scholar
  253. Zhang, T. L., Luhmann, J. G. and Russell, C. T.: 1990a, ‘The Solar Cycle Dependence of the Location and Shape of the Venus Bow Shock’, J. Geophys. Res. 95, 14961.ADSGoogle Scholar
  254. Zhang, M. H. G., Luhmann, J. G. and Kliore, A. J.: 1990b, ‘An Observational Study of the Nightside Ionospheres of Venus and Mars with Radio Occultation Methods’, J. Geophys. Res. 95, 17095.ADSGoogle Scholar
  255. Zhang, M. H. G., Luhmann, J. G. and Kliore, A. J.: 1990c, ‘A Post-Pioneer Venus Reassessment of the Martian Dayside Ionosphere as Observed by Radio Occultation Methods’, J. Geophys. Res. 95, 14829.ADSGoogle Scholar
  256. Zhang, T. L., Luhmann, J. G. and Russell, C. T.: 1991, ‘The Magnetic Barrier at Venus’, J. Geophys. Res. 96, 11145.ADSGoogle Scholar
  257. Zhang, M. H. G., Luhmann, J. G., Nagy, A. F., Spreiter, J. R. and Stahara, S. S.: 1993a, ‘Oxygen Ionization Rates at Mars and Venus: Relative Contributions of Impact Ionization and Charge Exchange’, J. Geophys. Res. 98, 3311.ADSGoogle Scholar
  258. Zhang, M. H. G., Luhmann, J. G., Bougher, S. W. and Nagy, A. F.: 1993b, ‘The Ancient Oxygen Exosphere of Mars: Implication for Atmospheric Evolution’, J. Geophys. Res. 98, 10915.ADSGoogle Scholar
  259. Zhang, T. L., Schwingenschuh, K., Russell, C. T., Luhmann, J. G., Rosenbauer, H., Verigin, M. I. and Kotova, K.: 1994, ‘The Flaring of the Martian Magnetotail Observed by the Phobos 2 Spacecraft’, Geophys. Res. Lett. 21, 1121.ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • A.F. Nagy
    • 1
  • D. Winterhalter
    • 2
  • K. Sauer
    • 3
  • T.E. Cravens
    • 4
  • S. Brecht
    • 5
  • C. Mazelle
    • 6
  • D. Crider
    • 7
  • E. Kallio
    • 8
  • A. Zakharov
    • 9
  • E. Dubinin
    • 3
  • M. Verigin
    • 9
  • G. Kotova
    • 9
  • W.I. Axford
    • 3
  • C. Bertucci
    • 6
  • J.G. Trotignon
    • 10
  1. 1.University of Michigan, Atm Oc & Space SciencesAnn ArborU.S.A.
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaU.S.A.
  3. 3.Max-Planck-Institut für AeronomieKatlenburg-LindauGermany
  4. 4.University of KansasLawrenceU.S.A
  5. 5.Bay Area Res CorpOrindaU.S.A
  6. 6.Centre d'Etude Spatiale des Rayonnements/CNRSToulouseFrance
  7. 7.Department of PhysicsCatholic University of AmericaWashington, D.C.U.S.A.
  8. 8.Geophysical ResearchFinnish Meteorological InstituteHelsinkiFinland
  9. 9.Space Research InstituteRussian Academy of SciencesMoscowRussia
  10. 10.LPCE/CNRS, Laboratoire de Physique et Chimie, de l'EnvironnementOrleans Cedex 2France

Personalised recommendations