Advertisement

Somatic Cell and Molecular Genetics

, Volume 25, Issue 1, pp 41–48 | Cite as

Determination of the Genotype of a Panel of Human Tumor Cell Lines for the Human Homologues of Yeast Cell Cycle Checkpoint Control Genes: Identification of Cell Lines Carrying Homoallelic Missense Base Substitutions

  • Yosuke EjimaEmail author
  • Lichun Yang
Article

Abstract

A number of human homologues of yeast cell cycle checkpoint control genes have been identified recently. In this study, the sequence alterations in six of such novel human genes (hRAD1, hRAD9, hRAD17, hHUS1, CHK1 and CHES1) were analyzed by PCR-single-strand conformational polymorphism (PCR-SSCP) method on a panel of 25 human tumor cell lines in an attempt to search for possible in vivo cases where any of the checkpoint-related genes are altered in human systems. For hRAD9, hHUS1 or CHK1, no SSCP variant was detected in any of the cell lines tested, indicating a high stability of these genes in human cancer. Most of the SSCP variants found in the other three genes were due to single nucleotide base substitutions. Two cell lines were found to be homozygous for missense-type base substitutions, i.e., Saos-2 was homoallelic for 1637T → G in hRAD17; and COLO320DM for 1189G → A in CHES1, indicating a possible use of these cell lines for further study. The former nucleotide change in hRAD17, which causes a change of amino acid from arginine to lysine at codon 546, was supposed to be polymorphic. Considering that lysine, but not arginine, is the amino acid that is well conserved among fission yeast, mouse and monkey at the corresponding position, coexistence of both alleles in human may have a functional or selectional implication.

Keywords

Nucleotide Lysine Arginine Human Cancer High Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

LITERATURE CITED

  1. 1.
    Hartwell, L.H., and Weinert, T. (1989). Science 246: 629–634.Google Scholar
  2. 2.
    Carr, A.M. (1995). Semin. Cell. Biol. 6:65–72.Google Scholar
  3. 3.
    Funari, B., Rhind, N., and Russell, P. (1997). Science 277:1495–1497.Google Scholar
  4. 4.
    Longhese, M.P., Foiani, M., Muzi-Falconi, M., Lucchini, G., and Plevani, P. (1998). EMBO J. 19:5525–5528.Google Scholar
  5. 5.
    Savitsky, K., Bar-Shira, A., Gilad, S., Rotman, G., Ziv, Y., Vanagaite, L., Tagle, D.A., Smith, S., Uziel, T., Sfez, S., et al. (1995). Science 268:1749–1753.Google Scholar
  6. 6.
    Parker, A.E., Van de Weyer, I., Laus, M.C., Oostveen, I., Yon, J., Verhasselt, P., and Luyten, H.M.L. (1998). J. Biol. Chem. 273:18332–18339.Google Scholar
  7. 7.
    Udell, C.M., Lee, S.K., and Davey, S. (1998). Nucl. Acids Res. 26:3971–3976.Google Scholar
  8. 8.
    Bluyssen, H.A.R., van Os R.I., Naus, N.C., Jaspers, I., Hoeijmakers, J.H., and de Klein, A. (1998). Genomics 54:331–337.Google Scholar
  9. 9.
    Marathi, U.K., Dahlen, M., Sunnerhagen, P., Romero, A.V., Ramagli, L.S., Siciliano, M.J., Li, L., and Legerski, R.J. (1998). Genomics 54:344–347.Google Scholar
  10. 10.
    Dean, F.B., Lian, L., and O'Donnell (1998). Genomics 54:424–436.Google Scholar
  11. 11.
    Lieberman, H.B., Hopkins, K.M., Nass, M., Demetrick, D., and Davey, S. (1996). Proc. Natl. Acad. Sci. U.S.A. 93:13890–13895.Google Scholar
  12. 12.
    Parker, A.E., Van de Weyer, I., Laus, M.C., Verhasselt, P., and Luyten, W.H.M. (1998). J. Biol. Chem. 273:18340–18346.Google Scholar
  13. 13.
    Bluyssen, H.A.R., Naus, N.C., van Os, R.I., Jaspers, I., Hoeijmakers, J.H.J., and de Klein, A. (1999). Genomics 55:219–228.Google Scholar
  14. 14.
    Bao, S., Chang, M.-S., Auclair, D., Sun, Y., Wang, Y., Wong, W.-K., Zhang, J., Liu, Y., Quian, X., Sutherland, R., et al. (1999). Cancer Res. 59:2023–2028.Google Scholar
  15. 15.
    Li, L., Peterson, C.A., Kanter-Smoler, G., Wei, Y.-F., Ramagli, L.S., Sunnerhagen, P., Siciliano, M.J., and Legerski, R.J. (1999). Oncogene 18:1689–1699.Google Scholar
  16. 16.
    Von Deimling, F., Scharf, J.M., Liehr, T., Rothe, M., Kelter, A.-R., Albers, P., Dietrich, W.F., Kunkel, L.M., Wernet, N., and Wirth, B. (1999). Hum. Genet. 105:17–27.Google Scholar
  17. 17.
    Kostrub, C.F., Knudsen, K., Subramani, S., and Enoch, T. (1998). EMBO J. 17:2055–2066.Google Scholar
  18. 18.
    Sanchez, Y., Wong, C., Thoma, R.S., Richman, R., Wu, Z., Piwnica-Worms, H., and Elledge, S.J. (1997). Science 277:1497–1501.Google Scholar
  19. 19.
    Davey, S., and Beach, D. (1995). Mol. Biol. Cell 6:1411–1421.Google Scholar
  20. 20.
    Pati, D., Keller, C., Groudine, M., and Plon, S.E. (1997). Mol. Cell. Biol. 17:3037–3046.Google Scholar
  21. 21.
    Greenblatt, M.S., Bennett, W.P., Hollstein, M., and Harris, C.C. (1994). Cancer Res. 54:4855–4878.Google Scholar
  22. 22.
    Wieland, I., Bohm, M., Arden, K.C., Ammermuller, T., Bogatz, S., Viars, C.S., and Rajewsky, M.F. (1996). Oncogene 12:97–102.Google Scholar
  23. 23.
    Tavassoli, M., Steingrimsdottir, H., Pierce, E., Jiang, X., Alagoz, M., Farzaneh, F., and Campbell, I.G. (1996). Br. J. Cancer 74:115–119.Google Scholar
  24. 24.
    Ejima, Y., and Sasaki, M.S. (1997). Somat. Cell Mol. Genet. 23:341–351.Google Scholar
  25. 25.
    Ejima, Y., and Sasaski, M.S. (1998). Hum. Genet. 102:403–408.Google Scholar
  26. 26.
    Volkmer, E., and Karnitz, L.M. (1999). J. Biol. Chem. 274:567–570.Google Scholar
  27. 27.
    Semple, T.U., Quinn, L.A., Woods, L.K., and Moore, G.E. (1978). Cancer Res. 38:1345–1355.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  1. 1.Department of Radiological Sciences and TechnologyHiroshima Prefectural College of Health and WelfareHiroshimaJapan
  2. 2.Radiation Biology CenterKyoto University, Yoshida-konoecho, Sakyo-kuKyotoJapan

Personalised recommendations