Advertisement

Somatic Cell and Molecular Genetics

, Volume 25, Issue 1, pp 27–31 | Cite as

Influence of DNA Delivery Method on Gene Targeting Frequencies in Human Cells

  • Rafael J. Yáñez
  • Andrew C.G. PorterEmail author
Article

Abstract

Gene targeting can be used for genetic studies of human cell lines and has significant potential for somatic cell gene therapy. These applications are however restricted by the low frequency of homologous recombination in higher eukaryotes compared to the relatively efficient nonhomologous integration of transfected DNA into the genome. As part of our attempts to overcome this problem, we compared two widely used transfection methods for their efficiency in gene targeting. To our surprise we found that, for conditions that render similar frequencies of nonhomologous integrants, lipofection is much less efficient than electroporation in generating targeted clones. This suggests that nonhomologous and homologous recombination have different requirements for DNA delivery in human cells.

Keywords

Gene Target Gene Therapy Somatic Cell Human Cell Genetic Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

LITERATURE CITED

  1. 1.
    Capecchi, M.R. (1989). Science 244:1288–1292.Google Scholar
  2. 2.
    Koller, B.H., and Smithies, O. (1992). Annu. Rev. Immunol. 10:705–730.Google Scholar
  3. 3.
    Yáñez, R.J., and Porter, A.C.G. (1998). Gene Ther. 5:149–159.Google Scholar
  4. 4.
    Porter, A.C.G. (1996). In N.R. Lemoine, and D.N. Cooper, editors, Gene therapy. BIOS Scientific Publishers, Oxford, Great Britain, pp. 169–190.Google Scholar
  5. 5.
    Itzhaki, J.E., Gilbert, C.S., and Porter, A.C.G. (1997). Nat. Genet. 15:258–265.Google Scholar
  6. 6.
    Brown, J.P., Wei, W., and Sedivy, J.M. (1997). Science 277:831–834.Google Scholar
  7. 7.
    Smithies, O., Gregg, R.G., Boggs, S.S., Koralewski, M.A., and Kucherlapati, R.S. (1985). Nature 317: 230–234.Google Scholar
  8. 8.
    Lin, F.L., Sperle, K., and Sternberg, N. (1985). Proc. Natl. Acad. Sci. U.S.A. 82:1391–1395.Google Scholar
  9. 9.
    Song, K.Y., Schwartz, F., Maeda, N., Smithies, O., and Kucherlapati, R. (1987). Proc. Natl. Acad. Sci. U.S.A. 84:6820–6824.Google Scholar
  10. 10.
    Thomas, K.R., Folger, K.R., and Capecchi, M.R. (1986). Cell 44:419–428.Google Scholar
  11. 11.
    Boggs, S.S., Gregg, R.G., Borenstein, N., and Smithies, O. (1986). Exp. Hematol. 14:988–994.Google Scholar
  12. 12.
    Nairn, R.S., Adair, G.M., Porter, T., Pennington, S.L., Smith, D.G., Wilson, J.H., and Seidman, M.M. (1993). Somat. Cell Mol. Genet. 19:363–375.Google Scholar
  13. 13.
    Waldman, B.C., O'Quinn, J.R., and Waldman, A.S. (1996). Biochim. Biophys. Acta. 1308:241–250.Google Scholar
  14. 14.
    Ellis, J., and Bernstein, A. (1989). Mol. Cell Biol. 9:1621–1627.Google Scholar
  15. 15.
    Wang, Q., and Taylor, M.W. (1993). Mol. Cell. Biol. 13:918–927.Google Scholar
  16. 16.
    Mitani, K., Wakamiya, M., Hasty, P., Graham, F.L., Bradley, A., and Caskey, C.T. (1995). Somat. Cell Mol. Genet. 21:221–231.Google Scholar
  17. 17.
    Russell, D.W., and Hirata, R.K. (1998). Nat. Genet. 18:325–330.Google Scholar
  18. 18.
    Shirasawa, S., Furuse, M., Yokoyama, N., and Sasazuki, T. (1993). Science 260:85–88.Google Scholar
  19. 19.
    Waldman, T., Kinzler, K.W., and Vogelstein, B. (1995). Cancer Res. 55:5187–5190.Google Scholar
  20. 20.
    Yáñez, R.J., and Porter, A.C.G. (1999). Gene Ther. 6:1282–1290.Google Scholar
  21. 21.
    Kinosita, K., Jr., and Tsong, T.Y. (1977). Biochim. Biophys. Acta. 471:227–242.Google Scholar
  22. 22.
    Klenchin, V.A., Sukharev, S.I., Serov, S.M., Chernomordik, L.V., and Chizmadzhev Yu, A. (1991). Biophys. J. 60:804–811.Google Scholar
  23. 23.
    Zabner, J., Fasbender, A.J., Moninger, T., Poellinger, K.A., and Welsh, M.J. (1995). J. Biol. Chem. 270: 18997–19007.Google Scholar
  24. 24.
    Coonrod, A., Li, F.Q., and Horwitz, M. (1997). Gene Ther. 4:1313–1321.Google Scholar
  25. 25.
    Dean, D.A. (1997). Exp. Cell Res. 230:293–302.Google Scholar
  26. 26.
    Loyter, A., Scangos, G., Juricek, D., Keene, D., and Ruddle, F.H. (1982). Exp. Cell Res. 139:223–234.Google Scholar
  27. 27.
    Fasbender, A., Marshall, J., Moninger, T.O., Grunst, T., Cheng, S., and Welsh, M.J. (1997). Gene Ther. 4:716–725.Google Scholar
  28. 28.
    Kowalczykowski, S.C., and Eggleston, A.K. (1994). Annu. Rev. Biochem. 63:991–1043.Google Scholar
  29. 29.
    Chu, G. (1997). J. Biol. Chem. 272:24097–24100.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  1. 1.Gene Targeting Group, MRC Clinical Sciences CentreImperial College School of Medicine, Hammersmith HospitalLondonUnited Kingdom

Personalised recommendations