Russian Journal of Bioorganic Chemistry

, Volume 30, Issue 2, pp 114–123 | Cite as

The Precursor of Differentiation Factor HLDF and Ribosomal Protein RPS21 Have a Common N-Terminal Sequence

  • E. V. Smirnova
  • A. V. Garkovenko
  • T. V. Rakitina
  • S. N. Berezhnoi
  • M. V. Astapova
  • E. A. Surina
  • I. I. Babichenko
  • I. A. Kostanyan
  • V. M. Lipkin


The mature differentiation factor HLDF, isolated from cultural medium, comprises 54 aa, whereas the open reading frame of mRNA encodes a 97-aa protein. We presumed that the protein translation begins from the first ATG codon, whose environment mostly meets the requirements for the initiation point. Two more ATG triplets are localized in positions 48–50 and 100–102 (numbering according to the structure of S21), i.e., in the area preceding the cDNA fragment that encodes the N-terminal fragment of the mature protein. The mRNAs of HLDF and S21 ribosomal protein have previously been shown to be highly homologous, and, therefore, their differences appear to be derived from two point deletions in the cDNA of the HLDF-encoding sequence (a G residue in position 112 and a C residue in position 224). As a result, the mature differentiation factor and RPS21 may be the products of translation from different open reading frames, the differentiation factor may be synthesized in the cell as a precursor, and its N-terminal sequence may be identical to that of RPS21. To test this hypothesis, we prepared recombinant RPS21 and the polyclonal antibodies to HLDF, full-size RPS21, and the C-terminal RPS21 peptide. Immunochemical staining by specially produced antibodies of native HL-60 cells and the same cells brought into apoptosis or differentiation confirmed that the precursor of the differentiation factor and the ribosomal S21 protein have a common N-terminal sequence and different cellular localizations. Neither an intron-containing gene nor a pseudogene with the nucleotide sequence corresponding to the HLDF cDNA was detected in the human genome or in the HL-60 cell line genome. On the basis of these facts, we propose a hypothesis of the molecular mechanism of the HLDF mRNA biosynthesis by means of posttranslational modifications of pre-mRNA of RPS21.

aberrant splicing apoptosis cell differentiation differentiation factor HLDF gene cloning HL-60 cell line RNA editing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kostanyan, I.A., Astapova, M.V., Starovoytova, E.V., Dranitsyna, S.M., and Lipkin, V.M., FEBS Lett., 1994, vol. 356, pp. 327-329.Google Scholar
  2. 2.
    Kostanyan, I.A., Astapova, M.I., Starovoytova, E.V., Dranitsina, S.M., and Lipkin, V.M., Bioorg. Khim., 1995, vol. 21, pp. 243-248.Google Scholar
  3. 3.
    Dranitsyna, S.M., Kostanyan, I.A., Andreeva, S.G., Astapova, M.V., Babichenko, I.I., Baeva, O.V., Bogachuk, A.P., Molotkovskaya, I.M., Rodionov, I.L., Smirnova, E.V., and Lipkin, V.M., Bioorg. Khim., 2000, vol. 26, pp. 340-351.Google Scholar
  4. 4.
    Smirnova, E.V., Rakitina, T.V., Evtodienko, A.Yu., Kostanyan, I.A., and Lipkin, V.M., Bioorg. Khim., 2000, vol. 26, pp. 364-368.Google Scholar
  5. 5.
    Bhat, K.S. and Morrison, S.G., Nucleic Acids Res., 1993, vol. 21, p. 2939.Google Scholar
  6. 6.
    Lutsch, G., Stahl, J., Kargel, H.-J., Noll, F., and Bielka, H., Eur.J. Cell Biol., 1990, vol. 51, pp. 140-150.Google Scholar
  7. 7.
    Kenmochi, N., Kawaguchi, T., Rozen, S., Davis, E., Goodman, N., Hudson, T.J., Tanaka, T., and Page, D.C., Genome Res., 1998, vol. 8, pp. 509-523.Google Scholar
  8. 8.
    Sanger, F., Nicklen, S., and Coulson, A.R., Proc. Natl. Acad. Sci. USA, 1977, vol. 74, pp. 5463-5467.Google Scholar
  9. 9.
    Harlow, E. and Lane, D., Antibodies: A Laboratory Manual, Cold Spring Harbor, NY: Cold Spring Harbor Lab., 1988.Google Scholar
  10. 10.
    Hsu, S.M., Raine, L., and Fanger, H., J. Histochem. Cytochem., 1981, vol. 25, pp. 577-580.Google Scholar
  11. 11.
    Feo, S., Davies, B., and Fried, M., Genomics, 1992, vol. 13, pp. 201-207.Google Scholar
  12. 12.
    Wagner, M. and Perry, R.P., Mol. Cell. Biol., 1985, vol. 5, pp. 3560-3576.Google Scholar
  13. 13.
    Zinn, A.R., Alagappan, R.K., Brown, L.G., Wool, I., and Page, D.C., Mol. Cell. Biol., 1994, vol. 14, pp. 2485-2492.Google Scholar
  14. 14.
    Dudov, K.P. and Perry, R.P., Cell (Cambridge, Mass.), 1984, vol. 37, pp. 457-468.Google Scholar
  15. 15.
    Tarn, W.Y. and Steitz, J.A., Trends Biochem. Sci., 1997, vol. 22, pp. 132-137.Google Scholar
  16. 16.
    Bai, G. and Lipton, S.A., Neuron, 1998, vol. 20, pp. 363-366.Google Scholar
  17. 17.
    Chang, J.G., Chen, Y.J., Perng, L.I., Wang, N.M., Kao, M.C., Yang, T.Y., Chang, C.P., and Tsai, C.H., Eur. J. Cancer, 1999, vol. 35, pp. 647-651.Google Scholar
  18. 18.
    Wang, N.M., Chang, J.G., Liu, T.C., Lin, S.F., Peng, C.T., Tsai, F.J., and Tsai, C.H., Int. J. Oncol., 2000, vol. 16, pp. 75-80.Google Scholar
  19. 19.
    Petzelt, C., Joswig, G., Mincheva, A., Lichter, P., Stammer, H., and Werner, D., J. Cell Sci., 1997, vol. 110, pp. 2573-2578.Google Scholar
  20. 20.
    Torok, T., Tick, G., Alvarado, M., and Kiss, L, Genetics, 1993, vol. 135, pp. 71-80.Google Scholar
  21. 21.
    Torok, I., Herrmann-Horle, D., Kiss, I., Tick, G., Speer, G., Schmitt, R., and Mechler, B.M., Mol. Cell. Biol., 1999, vol. 19, pp. 2308-2321.Google Scholar
  22. 22.
    Studier, F. and Moffatt, B., Mol. Biol. (Moscow), 1986, vol. 189, pp. 113-130.Google Scholar
  23. 23.
    Sambrook, J., Fritsch, E., and Maniatis, T., Molecular Cloning, Cold Spring Harbor, NY.: Cold Spring Harbor Laboratory, 1989.Google Scholar
  24. 24.
    Laemmli, U.K., Nature, 1970, vol. 227, pp. 680-685.Google Scholar
  25. 25.
    Engval, E. and Perlmann, P., J. Immunol., 1972, vol. 109, pp. 129-135.Google Scholar
  26. 26.
    Baehner, R. and Nathan, D., J. Med., 1968, vol. 278, pp. 971-976.Google Scholar
  27. 27.
    Carmichael, J., DeGraff, W.G., Gazdar, A.F., Minna, J.D., and Mitchell, J.B., Cancer Res., 1987, vol. 47, pp. 936-942.Google Scholar
  28. 28.
    Gray, R., Methods Enzymol., 1967, vol. 11, pp. 138-151.Google Scholar
  29. 29.
    Levina, N.B., Slepak, V.Z., Kiselev, O.G., and Shemyakin, V.V., Bioorg. Khim., 1989, vol. 15, pp. 24-31.Google Scholar
  30. 30.
    Hayashi, R., Methods Enzymol., 1976, vol. 45, pp. 538-568.Google Scholar
  31. 31.
    Harbottle, R.P., Cooper, R.G., Hart, S.L., Ladhoff, A., McKay, T., Knight, A.M., Wagner, E., Miller, A.D., and Coutelle, C., Hum. Gene Ther., 1998, vol. 9, pp. 1037-1047.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • E. V. Smirnova
    • 1
  • A. V. Garkovenko
    • 1
  • T. V. Rakitina
    • 1
  • S. N. Berezhnoi
    • 1
  • M. V. Astapova
    • 1
  • E. A. Surina
    • 1
  • I. I. Babichenko
    • 2
  • I. A. Kostanyan
  • V. M. Lipkin
    • 1
  1. 1.Shemyakin–Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Russian University of Peoples' FriendshipMoscowRussia

Personalised recommendations