Radiophysics and Quantum Electronics

, Volume 47, Issue 1, pp 1–13 | Cite as

Vector Diffraction Integrals for Solving Inverse Problems of Radio-Holographic Sensing of the Earth's Surface and Atmosphere

  • A. G. Pavelyev
Article
  • 20 Downloads

Abstract

Vector relationships between the fields on a certain surface confining an inhomogeneous three-dimensional volume and the fields inside this volume are obtained by the Stratton–Chu method developed for the case of homogeneous media. The vector relationships allow us to solve the direct and inverse problems of determining the fields inside an inhomogeneous medium given the field on its boundary. The vector equations take into acount the polarization changes of direct and inverse waves propagated in an inhomogeneous medium. In the case of a two-dimensional homogeneous medium, the vector equations reduce to the previously obtained scalar equations used in the approximation of spherical symmetry to describe the process of backward wave propagation during the atmospheric and ionospheric radio-occultation monitoring. It is shown that the Green's function of the scalar wave equation in an inhomogeneous medium should be used as the reference signal for solving the inverse problem of radio-occultation monitoring. This validates the method of focused synthetic aperture previously used for high-accuracy retrieval of the vertical refractive-index profiles in the ionosphere and atmosphere. In this method, the reference-signal phase was determined from a model which describes with sufficient accuracy the radiophysical parameters of a refracting medium in the region of radio-occultation sensing. The obtained equations can be used for the high-accuracy solving of inverse problems of radio-holographic sensing of the Earth's atmosphere and surface by precision signals from radio-navigation satellites.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Ya. B. Zel'dovich, N. F. Pilipetsky, and V.V. Shkunov, Principles of Phase Conjugation, Springer-Verlag, Berlin (1985).Google Scholar
  2. 2.
    V. A. Zverev, Radio Optics [in Russian], Sovetskoe Radio, Moscow (1975).Google Scholar
  3. 3.
    E. A. Marouf and G. L. Tyler, Science, 217, 243 (1982).Google Scholar
  4. 4.
    M. E. Gorbunov and A. S. Gurvich, Int. J. Remote Sensing, 19,No. 12, 2283 (1998).Google Scholar
  5. 5.
    M. E. Gorbunov, Radio Science, 37,No. 5, 10-1–10-11 (2002).Google Scholar
  6. 6.
    V. S. Vladimirov, Equations of Mathematical Physics, Marcel Dekker Inc., New York (1971).Google Scholar
  7. 7.
    A. G. Pavelyev, K. Igarashi, D.A. Pavelyev, and K. Hocke, J. Commun. Technol. Electron., 47,No. 6, 609 (2002).Google Scholar
  8. 8.
    A. G. Pavelyev, J. Commun. Technol. Electron., 43,No. 8, 875 (1998).Google Scholar
  9. 9.
    A. G. Pavelyev, K. Igarashi, C. Reigber et al., Radio Sci., 37,No. 3, 15-1–15-11 (2002).Google Scholar
  10. 10.
    V. E. Kunitsyn and E.D. Tereshchenko, Ionospheric Tomography [in Russian], Nauka, Moscow (1991).Google Scholar
  11. 11.
    V. E. Kunitsyn, E. S. Andreeva, E.D. Tereshchenko, et al., Int. J. Imag. Syst. Techol., 5, 112 (1994).Google Scholar
  12. 12.
    J.A. Stratton, Electromagnetic Theory, McGraw-Hill, New York (1941).Google Scholar
  13. 13.
    M. A. Miller and E. V. Suvorov, Physical Encyclopedia, Vol. 3 [in Russian], Bol'shaya Rossiyskaya Éntsiklopedia, Moscow (1992), p. 33.Google Scholar
  14. 14.
    Yu.A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media, Springer-Verlag, Berlin (1990).Google Scholar
  15. 15.
    D. S. Lukin and E.A. Palkin, Numerical Canonical Method in Problems of Diffraction and Propagation of Electromagnetic Waves in Inhomogeneous Media [in Russian], Moscow Physical and Technical Institute, Moscow (1982).Google Scholar
  16. 16.
    S. L. Karepov and A. C. Kruykovskii, J. Commun. Technol. Electron., 46,No. 1, 34 (2001).Google Scholar
  17. 17.
    K. Hocke, A. Pavelyev, O. Yakovlev et al., J. Atmos. Sol.-Terr. Phys., 61, 1169 (1999).Google Scholar
  18. 18.
    K. Igarashi, A.G. Pavelyev, K. Hocke et al., Earth, Planets and Space, 52,No. 11, 893 (2000).Google Scholar
  19. 19.
    A. Pavelyev and S.D. Eliseev, Radiotekh. Élektron., 34,No. 9, 928 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • A. G. Pavelyev
    • 1
  1. 1.Institute of Radio Engineering and Electronics of the Russian Academy of SciencesFryazino, Moscow RegionRussia

Personalised recommendations