Skip to main content
Log in

Potential Beneficial Metabolic Interactions Between Tamoxifen and Isoflavones via Cytochrome P450-mediated Pathways in Female Rat Liver Microsomes

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. This study aims to evaluate a cytochrome P450-based tamoxifen-isoflavone interaction and to determine the mechanisms responsible for inhibitory effects of isoflavones (e.g., genistein) on the formation of α-hydroxytamoxifen.

Methods. Metabolism studies were performed in vitro using female rat liver microsomes. The effects of genistein and an isoflavone mixture on tamoxifen metabolism and the inhibition mechanism were determined using standard kinetic analysis, preincubation, and selective chemical inhibitors of P450.

Results. Metabolism of tamoxifen was saturable with K m values of 4.9 ± 0.6, 14.6 ± 2.2, 25 ± 5.9 μM and V max values of 34.7 ± 1.4, 297.5 ± 19.2, 1867 ± 231 pmol min−1 mg−1 for α-hydroxylation, N-desmethylation, and N-oxidation, respectively. Genistein (25 μM) inhibited α-hydroxylation at 2.5 μM tamoxifen by 64% (p < 0.001) but did not affect the 4-hydroxylation, N-desmethylation, and N-oxidation. A combination of three (genistein, daidzein, and glycitein) to five isoflavones (plus biochanin A and formononetin) inhibited tamoxifen α-hydroxylation to a greater extent but did not decrease the formation of identified metabolites. The inhibition on α-hydroxylation by genistein was mixed-typed with a K i , value of 10.6 μM. Studies using selective chemical inhibitors showed that tamoxifen α-hydroxylation was mainly mediated by rat CYP1A2 and CYP3A1/2 and that genistein 3`-hydroxylation was mainly mediated by rat CYP1A2, CYP2C6 and CYP2D1.

Conclusions. Genistein and its isoflavone analogs have the potential to decrease side effects of tamoxifen through metabolic interactions that inhibit the formation of α-hydroxytamoxifen via inhibition of CYP1A2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. C. Jordan, S. Gapstur, and M. Morrow. Selective estrogen receptor modulation and reduction in risk of breast cancer, os-teoporosis, and coronary heart disease. J. Natl. Cancer Inst. 93: 1449–1457 (2001).

    PubMed  Google Scholar 

  2. J. L Perez-Gracia and E. M Carrasco. Tamoxifen therapy for ovarian cancer in the adjuvant and advanced settings: systematic review of the literature and implications for future research. Gy-necol. Oncol. 84:201–209 (2002).

    Google Scholar 

  3. R. C Bergan, E. Reed, C. E Myers, D. Headlee, O. Brawley, H. K. Cho, W. D. Figg, A. Tompkins, W. M. Linehan, D. Kohler, S. M Steinberg, and M. V. Blagosklonny. A Phase II study of high-dose tamoxifen in patients with hormone-refractory prostate can-cer. Clin. Cancer Res. 5:2366–2373 (1999).

    PubMed  Google Scholar 

  4. E. Pukkala, P. Kyyronen, R. Sankila, and K. Holly. Tamoxifen and toremifene treatment of breast cancer and risk of subsequent endometrial cancer: a population-based case-control study. Int. J. Cancer 100:337–341 (2002).

    PubMed  Google Scholar 

  5. S. Shibutani, A. Ravindernath, N. Suzuki, I. Terashima, and S. M. Sugarman. A. P Grollman, M. L. Pearl. Identification of tamoxi-fen-DNA adducts in the endometrium of women treated with tamoxifen. Carcinogenesis 21:1461–1467 (2000).

    PubMed  Google Scholar 

  6. D. H. Phillips. Understanding the genotoxicity of tamoxifen? Carcinogenesis 22:839–849 (2001).

    PubMed  Google Scholar 

  7. I. N. White. Anti-oestrogenic drugs and endometrial cancers. Toxicol. Lett. 120:21–29 (2001).

    PubMed  Google Scholar 

  8. A. Umemoto, K. Komaki, Y. Monden, M. Suwa, Y. Kanno, M. Kitagawa, M. Suzuki, C. X. Lin, Y. Ueyama, M. A. Momen, A. Ravindernath, and S. Shibutani. Identification and quantification of tamoxifen-DNA adducts in the liver of rats and mice. Chem. Res. Toxicol 14:1006–1013 (2001).

    PubMed  Google Scholar 

  9. S. Shibutani, P. M. Shaw, N. Suzuki, L. Dasaradhi, M. W. Duffel, and I. Terashima. Sulfation of alpha-hydroxytamoxifen catalyzed by human hydroxysteroid sulfotransferase results in tamoxifen-DNA adducts. Carcinogenesis 19:y2007–2011 (1998).

    Google Scholar 

  10. G. Milano, M. C. Etienne, M. Frenay, R. Khater, J. L. Formento, N. Renee, J. L. Moll, M. Francoual, M. Berto, and M. Namer. Optimized analysis of tamoxifen and its main metabolites in the plasma and cytosol of mammary tumors. Br. J. Cancer 55:509–512 (1987).

    PubMed  Google Scholar 

  11. R. R. Reddel, L. C. Murphy, and R. L. Sutherland. Effects of biologically active metabolites of tamoxifen on the proliferation kinetics of MCF-7 human breast cancer cells in vitro. Cancer Res. 43:4618–4624 (1983).

    PubMed  Google Scholar 

  12. S. M. Langan-Fahey, D. C. Tormey, and V. C. Jordan. Tamoxifen metabolites in patients on long-term adjuvant therapy for breast cancer. Eur. J. Cancer 26:883–888 (1990).

    PubMed  Google Scholar 

  13. G. K. Poon, Y. C. Chui, R. McCague, P. E. Linning, R. Feng, M. G. Rowlands, and M. Jarman. Analysis of phase I and phase II metabolites of tamoxifen in breast cancer patients. Drug Metab. Dispos. 21:1119–1124 (1993).

    PubMed  Google Scholar 

  14. C. Mani, H. V. Gelboin, S. S. Park, R. Pearce, A. Parkinson, and D. Kupfer. Metabolism of the antimammary cancer antiestro-genic agent tamoxifen. I. Cytochrome P-450-catalyzed N-demethylation and 4-hydroxylation. Drug Metab. Dispos. 21:645–656 (1993a).

    PubMed  Google Scholar 

  15. C. Mani, E. Hodgson, and D. Kupfer. Metabolism of the anti-mammary cancer antiestrogenic agent tamoxifen. II. Cytochrome P-450-catalyzed N-demethylation and 4-hydroxylation. Drug Metab. Dispos. 21:657–661 (1993b).

    PubMed  Google Scholar 

  16. D. J. Boocock, J. L. Maggs, I. N. White, and B. K. Park. α-hy-droxytamoxifen, a genotoxic metabolite of tamoxifen in the rat: identification and quantification in vivo and in vitro. Carcinogen-esis 20:153–160 (1999).

    Google Scholar 

  17. H. K. Crewe, L. M. Notley, R. M. Wunsch, M. S. Lennard, and E. M. Gillam. Metabolism of tamoxifen by recombinant human cy-tochrome P450 enzymes: formation of the 4-hydroxy, 4'-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab. Dispos. 30:869–874 (2002).

    PubMed  Google Scholar 

  18. M. Kurzer and X. Xu. Dietary Phytoestrogens. Annu. Rev. Nutr. 17:353–381 (1997).

    PubMed  Google Scholar 

  19. D. F. Birt, S. Hendrich, and W. Wang. Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol. Ther. 90: 157–177 (2001).

    PubMed  Google Scholar 

  20. C. S. Yang, J. M. Landau, M. T. Huang, and H. L. Newmark. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu. Rev. Nutr. 21:381–406 (2001).

    PubMed  Google Scholar 

  21. H. Wiseman. The therapeutic potential of phytoestrogens. Expert Opin. Investig. Drugs 9:1829–1840 (2000).

    PubMed  Google Scholar 

  22. Y. Liu and M. Hu. Absorption and metabolism of flavonoids in the Caco-2 cell culture model and a perfused rat intestinal model. Drug Metab. Dispos. 30:370–377 (2002).

    PubMed  Google Scholar 

  23. J. Chen, H. Lin, and M. Hu. Metabolism of flavonoids via enteric recycling: role of intestinal disposition. J. Pharmacol. Exp. Therap 304:1228–1235 (2003).

    Google Scholar 

  24. K. D. Setchell, N. M. Brown, P. Desai, L. Zimmer-Nechemias, B. E. Wolfe, W. T. Brashear, A. S. Kirschner, A. Cassidy, and J. E. Heubi. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J. Nutr. 131: 1362S–1375S (2001).

    PubMed  Google Scholar 

  25. M. Hu, K. Krausz, J. Chen, X. Ge, J. Q. Li, H. L. Gelboinl, and F. J. Gonzalez. Identification of CYP1A2 the main isoform for the phase I hydroxylated metabolism of genistein and a prodrug converting enzyme of methylated isoflavones. Drug Metab. Dis-pos. 31:924–931 (2003).

    Google Scholar 

  26. S. E. Kulling, D. M. Honig, and M. Metzler. Oxidative metabo-lism of the soy isoflavones daidzein and genistein in humans in vitro and in vivo. J. Agric. Food Chem. 49:3024–3033 (2001).

    PubMed  Google Scholar 

  27. E. S. Roberts-Kirchhoff, J. R. Crowley, P. F. Hollenberg, and H. Kim. Metabolism of genistein by rat and human cytochrome P450s. Chem. Res. Toxicol. 12:610–616 (1999).

    PubMed  Google Scholar 

  28. S. E. Kulling, D. M. Honig, T. J. Simat, and M. Metzler. Oxidative in vitro metabolism of the soy phytoestrogens daidzein and genis-tein. J. Agric. Food Chem. 48:4963–4972 (2000).

    PubMed  Google Scholar 

  29. K. M. Newton, D. S. Buist, N. L. Keenan, L. A. Anderson, and A. Z. LaCroix. Use of alternative therapies for menopause symp-toms: results of a population-based survey. Obstet. Gynecol. 100: 18–25 (2002).

    PubMed  Google Scholar 

  30. M. J. Messina and C. L. Loprinzi. Soy for breast cancer survivors: a critical review of the literature. J. Nutr. 131:3095S–3108S (2001).

    PubMed  Google Scholar 

  31. A. Brzezinski and A. Debi. Phytoestrogens: the “natural” selec-tive estrogen receptor modulators? Eur. J. Obstet. Gynecol. Re-prod. Biol. 85:47–51 (1999).

    Google Scholar 

  32. D. Carusi. Phytoestrogens as hormone replacement therapy: an evidence-based approach. Care Update Ob. Gyns 7:253–259 (2000).

    Google Scholar 

  33. F. Shen, X. Xue, and G. Weber. Tamoxifen and genistein syner-gistically down-regulate signal transduction and proliferation in estrogen receptor-negative human breast carcinoma MDA-MB-435 cells. Anticancer Res. 19:1657–1662 (1999).

    PubMed  Google Scholar 

  34. V. Tanos, A. Brzezinski, O. Drize, N. Strauss, and T. Peretz. Synergistic inhibitory effects of genistein and tamoxifen on hu-man dysplastic and malignant epithelial breast cells in vitro. Eur. J. Obstet. Gynecol. Reprod. Biol. 102:188–194 (2002).

    PubMed  Google Scholar 

  35. J. R. Okita, P. J. Castle, and R. T. Okita. Characterization of cytochromes P450 in liver and kidney of rats treated with di-(2-ethylhexyl) phthalate. J. Biochem. Toxicol. 8:135–144 (1993).

    PubMed  Google Scholar 

  36. I. H. Segel. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems. John Wiley and Sons, New York, 1975.

    Google Scholar 

  37. H. K. Crewe, S. W. Ellis, M. S. Lennard, and G. T. Tucker. Variable contribution of cytochromes P450 2D6, 2C9 and 3A4 to the 4-hydroxylation of tamoxifen by human liver microsomes. Biochem. Pharmacol. 53:171–178 (1997).

    PubMed  Google Scholar 

  38. C. K. Lim, Z. X. Yuan, J. H. Lamb, I. N. White, F. De Matteis, and L. L. Smith. A comparative study of tamoxifen metabolism in female rat, mouse and human liver microsomes. Carcinogenesis 15:589–593 (1994).

    PubMed  Google Scholar 

  39. C. Mani, R. Pearce, A. Parkinson, and D. Kupfer. Involvement of cytochrome P4503A in catalysis of tamoxifen activation and co-valent binding to rat and human liver microsomes. Carcinogenesis 15:2715–2720 (1994).

    PubMed  Google Scholar 

  40. H. Doi, H. Iwasaki, Y. Masubuchi, R. Nishigaki, and T. Horie. Chemiluminescence associated with the oxidative metabolism of salicylic acid in rat liver microsomes. Chem. Biol. Interact. 140: 109–119 (2002).

    PubMed  Google Scholar 

  41. W. G. Chung, C. S. Park, H. K. Roh, W. K. Lee, and Y. N. Cha. Oxidation of ranitidine by isozymes of flavin-containing mono-oxygenase and cytochrome P450. Jpn. J. Pharmacol. 84:213–220 (2000).

    PubMed  Google Scholar 

  42. J. Schmider, D. J. Greenblatt, S. M. Fogelman, L. L. von Moltke, and R. I. Shader. Metabolism of dextromethorphan in vitro: in-volvement of cytochromes P450 2D6 and 3A3/4, with a possible role of 2E1. Biopharm. Drug Dispos. 18:227–240 (1997).

    PubMed  Google Scholar 

  43. V. A. Eagling, J. F. Tjia, and D. J. Back. Differential selectivity of cytochrome P450 inhibitors against probe substrates in human and rat liver microsomes. Br. J. Clin. Pharmacol. 45:107–114 (1998).

    PubMed  Google Scholar 

  44. Y. Masubuchi, E. Masuda, and T. Horie. Multiple mechanisms in indomethacin-induced impairment of hepatic cytochrome P450 enzymes in rats. Gastroenterology 122:774–783 (2002).

    PubMed  Google Scholar 

  45. K. Kobayashi, K. Urashima, N. Shimada, and K. Chiba. Selec-tivities of human cytochrome P450 inhibitors toward rat P450 isoforms: study with cDNA-expressed systems of the rat. Drug Metab. Dispos. 31:833–836 (2003).

    PubMed  Google Scholar 

  46. R. W. Wang, P. H. Kari, A. Y. Lu, P. E. Thomas, F. P. Guengerich, and K. P. Vyas. Biotransformation of lovastatin. IV. Identification of cytochrome P450 3A proteins as the major en-zymes responsible for the oxidative metabolism of lovastatin in rat and human liver microsomes. Arch. Biochem. Biophys. 290: 355–361 (1991).

    PubMed  Google Scholar 

  47. Y. Ando, E. Fuse, and W. D. Figg. Thalidomide metabolism by the CYP2C subfamily. Clin. Cancer Res. 8:1964–1973 (2002).

    PubMed  Google Scholar 

  48. M. G. Busby, A. R. Jeffcoat, L. T. Bloedon, M. A. Koch, T. Black, K. J. Dix, W. D. Heizer, B. F. Thomas, J. M. Hill, J. A. Crowell, and S. H. Zeisel. Clinical characteristics and pharmacokinetics of purified soy isoflavones: single-dose administration to healthy men. Am. J. Clin. Nutr. 75:126–136 (2002).

    PubMed  Google Scholar 

  49. G. K. Poon, B. Walter, P. E. Lonning, M. N. Horton, and R. McCague. Identification of tamoxifen metabolites in human HepG2 cell line, human liver homogenate, and patients on long-term therapy for breast cancer. Drug Metab. Dispos. 23:377–382 (1995).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Halls, S.C., Alfaro, J.F. et al. Potential Beneficial Metabolic Interactions Between Tamoxifen and Isoflavones via Cytochrome P450-mediated Pathways in Female Rat Liver Microsomes. Pharm Res 21, 2095–2104 (2004). https://doi.org/10.1023/B:PHAM.0000048202.92930.61

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000048202.92930.61

Navigation