Skip to main content
Log in

Compartmental Modeling of Transdermal Iontophoretic Transport: I. In Vitro Model Derivation and Application

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The objective of this study was to develop a family of compartmental models to describe in a strictly quantitative manner the transdermal iontophoretic transport of drugs in vitro.

Methods. Two structurally different compartmental models describing the in vitro transport during iontophoresis and one compartmental model describing the in vitro transport in post-iontophoretic period are proposed. These models are based on the mass transfer from the donor compartment to the acceptor compartment via the skin as an intermediate compartment. In these models, transdermal iontophoretic transport is characterized by 5 parameters: 1) kinetic lag time (t L), 2) steady-state flux during iontophoresis (J ss), 3) skin release rate constant (K R), 4) the first-order rate constant of the iontophoretic driving force from the skin to the acceptor compartment (I 1), and 5) passive flux in the post-iontophoretic period (J pas). The developed models were applied to data on the iontophoretic transport in human stratum corneum in vitro of R-apomorphine after pretreatment with phosphate buffered saline pH 7.4 (PBS) and after pretreatment with surfactant (SFC), as well as the iontophoretic transport of 0.5 mg ml-1 rotigotine at pH 5 (RTG).

Results. All of the proposed models could be fitted to the transport data of PBS, SFC, and RTG groups both during the iontophoresis and in the post-iontophoretic period. The incorporation of parameter I 1 failed to improve the fitting performance of the model. This might indicate a negligible contribution of iontophoretic driving force to the mass transfer in the direction from the skin to the acceptor compartment, although it plays an important role in loading the skin with the drug. The estimated values of J ss of PBS, SFC, and RTG were identical (p > 0.05) to the values obtained with the diffusion lag time method. Moreover, time required to achieve steady-state flux can be estimated based on the parameter t L and the reciprocal value of parameter K R. In addition, accumulation of drug molecules in the skin is reflected in a reduction of the value of the K R parameter.

Conclusions. The developed in vitro models demonstrated their strength and consistency to describe the drug transport during and post-iontophoresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. H. Sage. Iontophoresis. In E. W. Smith and H. I. Maibach (eds.), Percutaneous Penetration Enhancers, CRC Press, Boca Raton, 1995. pp. 351–368.

    Google Scholar 

  2. N. Kanikkannan, J. Singh, and P. Ramarao. In vitro transdermal iontophoretic transport of timolol maleate: effect of age and species. J. Control. Rel. 71:99–105 (2001).

    Google Scholar 

  3. S. Ganga and P. Ramarao. and J. Singh. Effect of Azone on the iontophoretic transdermal delivery of metoprolol tartrate through human epidermis in vitro. J. Control. Rel. 42:57–64 (1996).

    Google Scholar 

  4. S. Y. Oh, S. Y. Jeong, T. G. Park, and J. H. Lee. Enhanced transdermal delivery of AZT (Zidovudine) using iontophoresis and penetration enhancer. J. Control. Rel. 51:161–168 (1998).

    Google Scholar 

  5. K. C. Sung, J. Y. Fang, and H. Yoa-Pu. Delivery of nalbuphine and its prodrugs across skin by passive diffusion and iontophoresis. J. Control. Rel. 67:1–8 (2000).

    Google Scholar 

  6. J. Hirvonen and R. H. Guy. Iontophoretic delivery across the skin: electroosmosis and its modulation by drug substances. Pharm. Res. 14:1258–1263 (1997).

    PubMed  Google Scholar 

  7. R. F. Lopez, M. V. Bentley, M. B. Delgado-Charro, and R. H. Guy. Iontophoretic delivery of 5-aminolevulinic acid (ALA): effect of pH. Pharm. Res. 18:311–315 (2001).

    PubMed  Google Scholar 

  8. A. Luzardo-Alvarez, M. B. Delgado-Charro, and J. Blanco-Mendez. Iontophoretic delivery of ropinirole hydrochloride: ef-fect of current density and vehicle formulation. Pharm. Res. 18: 1714–1720 (2001).

    PubMed  Google Scholar 

  9. M. B. Delgado-Charro, A. M. Rodriguez-Bayon, and R. H. Guy. Iontophoresis of nafarelin: effects of current density and concentration on electrotransport in vitro. J. Control. Rel. 35:35–40 (1995).

    Google Scholar 

  10. M. B. Delgado-Charro and R. H. Guy. Iontophoretic delivery of nafarelin across the skin. Int. J. Pharm. 117:165–172 (1995).

    Google Scholar 

  11. G. L. Li, M. Danhof, P. M. Frederik, and J. A. Bouwstra. Pre-treatment with a water-based surfactant formulation affects transdermal iontophoretic delivery of R-apomorphine in vitro. Pharm. Res. 20:653–659 (2003).

    PubMed  Google Scholar 

  12. A. K. Nugroho, G. L. Li, M. Danhof, and J. A. Bouwstra. Transdermal iontophoresis of rotigotine across human stratum corneum in vitro: influence of pH and NaCl concentration. Pharm. Res. 21:844–850 (2004).

    PubMed  Google Scholar 

  13. M. J. Pikal. The role of electroosmotic flow in transdermal iontophoresis. Adv. Drug Deliv. Rev. 46:281–305 (2001).

    PubMed  Google Scholar 

  14. G. B. Kasting and J. C. Keister. Application of electrodiffusion theory for a homogenous membrane to iontophoretic transport through skin. J. Control. Rel. 8:195–210 (1989).

    Google Scholar 

  15. J. B. Phipps and J. R. Gyory. Transdermal ion migration. Adv. Drug Deliv. Rev. 9:137–176 (1992).

    Google Scholar 

  16. A. Jadoul, L. M. Dunbar, D. Ellis, and V. Preat. Modification induced on stratum corneum structure after in vitro iontophoresis: ATR-FTIR and X-ray scattering studies. J. Control. Rel. 42: 165–173 (1996).

    Google Scholar 

  17. A. Jadoul, J. A. Bouwstra, and V. Preat. Effects of iontophoresis and electroporation on the stratum corneum. Review of the biophysical studies. Adv. Drug Deliv. Rev. 35:89–105 (1999).

    PubMed  Google Scholar 

  18. N. M. Volpato, P. Santi, and P. Colombo. Iontophoresis enhances the transport of acyclovir through nude mouse skin by electrorepulsion and electroosmosis. Pharm. Res. 12:1623–1627 (1995).

    PubMed  Google Scholar 

  19. Pharsight Corporation. WinNonlin Professional v. 4.1 (2003).

  20. J. Gabrielsson and D. Weiner. Pharmacokinetic and Pharmacodynamic Data Analysis: Concepts and Applications. Swedish Pharmaceutical Press, Stockholm, Sweden, 2000.

    Google Scholar 

  21. M. Gibaldi and D. Perrier. Pharmacokinetics. Marcel Dekker, New York, 1982.

    Google Scholar 

  22. P. Singh, M. S. Roberts, and H. I. Maibach. Modeling of plasma levels of drugs following transdermal iontophoresis. J. Control. Rel. 33:293–298 (1995).

    Google Scholar 

  23. R. H. Guy, J. Hadgraft, and H. I. Maibach. A pharmacokinetic model for percutaneous absorbtion. Int. J. Pharm. 11:119–129 (1982).

    Google Scholar 

  24. R. H. Guy and J. Hadgraft. Transdermal drug delivery: a simplified pharmacokinetic approach. Int. J. Pharm. 24:267–274 (1985).

    Google Scholar 

  25. J. C. Shah. Application of kinetic model to in vitro percutaneous permeation of drugs. Int. J. Pharm. 133:179–189 (1996).

    Google Scholar 

  26. R. Van der Geest, M. Danhof, and H. E. Bodde. Iontophoretic delivery of apomorphine. I: In vitro optimization and validation. Pharm. Res. 14:1798–1803 (1997).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nugroho, A.K., Della Pasqua, O., Danhof, M. et al. Compartmental Modeling of Transdermal Iontophoretic Transport: I. In Vitro Model Derivation and Application. Pharm Res 21, 1974–1984 (2004). https://doi.org/10.1023/B:PHAM.0000048187.54125.ac

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000048187.54125.ac

Navigation