Skip to main content
Log in

In Situ Ileal Absorption of Insulin in Rats: Effects of Hyaluronidase Pretreatment Diminishing the Mucous/Glycocalyx Layers

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To test the hypothesis that the ileal mucous/glycocalyx layers can be removed by hyaluronidase and that their significant roles in insulin absorption can thereby be identified.

Methods. Rat ileal segments were pretreated with various concentrations of hyaluronidase by “perfusion” or “exposure”, and the absorption of insulin and 4.4-, 20-, and 40-kDa fluorescein isothiocyanate-labeled dextrans (FDs) were studied in the in situ ileal loop system. Diminished mucous/glycocalyx layers following the hyaluronidase pretreatment was confirmed by transmission electron microscopy (TEM), whereas intra- and intercellular integrity and/or damage was examined by light microscopy, lactate dehydrogenase (LDH) leakage, and membrane electrical resistance (Rm).

Results. Hyaluronidase “perfusion” pretreatment at concentrations ≥ 160 U/ml for 30 min significantly increased the hypoglycemic responses following in situ administration of insulin at 50 IU/kg. This enhancing effect was found to be dependent on hyaluronidase concentration and “exposure” periods and accompanied by the TEM observation of diminished mucous/glycocalyx layers from the hyaluronidase pretreatment, yet causing undetectable histological damage. In contrast, the absorption of FDs and the values for LDH leakage and Rm were unaffected by the hyaluronidase pretreatment, suggesting that the layers functioned insignificantly to diffusive absorption.

Conclusions. Hyaluronidase pretreatment increased ileal absorption of insulin, but not FDs, by virtue of the diminished mucous/glycocalyx layers without causing detectable cellular damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. V. H. L. Lee. Peptide and Protein Delivery. Marcel Dekker, New York, 1991.

    Google Scholar 

  2. K. L. Audus and T. J. Raub. Biological Barriers to Protein Delivery. Plenum Press, New York, 1993.

    Google Scholar 

  3. M. Morishita, I. Morishita, K. Takayama, Y. Machida, and T. Nagai. Site-dependent effect of aprotinin, sodium caprate, Na2EDTA and sodium glycocholate on intestinal absorption of insulin. Biol. Pharm. Bull. 16:68-72 (1993).

    Google Scholar 

  4. E. Ziv and M. Bendayan. Intestinal absorption of peptides through the enterocytes. Microsc. Res. Tech. 49:346-352 (2000).

    Google Scholar 

  5. A. Yamamoto, T. Taniguchi, K. Rikyuu, T. Tsuji, T. Fujita, M. Murakami, and S. Muranishi. Effects of various protease inhibitors on the intestinal absorption and degradation of insulin in rats. Pharm. Res. 11:1496-1500 (1994).

    Google Scholar 

  6. T. L. Watts and A. Fasano. Modulation of intestinal permeability: a novel and innovative approach for the oral delivery of drugs, macromolecules and antigens. Biotechnol. Genet. Eng. Rev. 17:433-453 (2000).

    Google Scholar 

  7. A. Frey, K. T. Giannasca, R. Weltzin, P. J. Giannasca, H. Reggio, W. I. Lencer, and M. R. Neutra. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J. Exp. Med. 184:1045-1059 (1996).

    Google Scholar 

  8. J. R. Pappenheimer. Role of pre-epithelial “unstirred” layers in absorption of nutrients from the human jejunum. J. Membr. Biol. 179:185-204 (2001).

    Google Scholar 

  9. S. Ito. Structure and function of the glycocalyx. Fed. Proc. 28:12-25 (1969).

    Google Scholar 

  10. A. Varki. Sialic acids as ligands in recognition phenomena. FASEB J. 11:248-255 (1997).

    Google Scholar 

  11. G. Wang, G. Williams, H. Xia, M. Hickey, J. Shao, B. L. Davidson, and P. B. McCray. Apical barriers to airway epithelial cell gene transfer with amphotropic retroviral vectors. Gene Ther. 14:922-931 (2002).

    Google Scholar 

  12. D. Massey-Harroche. Epithelial cell polarity as reflected in enterocytes. Microsc. Res. Tech. 49:353-362 (2000).

    Google Scholar 

  13. J. F. Woodley and E. E. Sterchi. Endopeptidase activity of the small intestine. In: W. A. Hemmings (ed.) Antigen Absorption by the Gut. MTP Press Ltd., London, 1978, pp.199-205.

    Google Scholar 

  14. A. M. Ugolev, L. F. Smirnova, N. N. Iezuitova, N. M. Timofeeva, N. M. Mityushova, V. V. Egorova, and E. M. Parshkov. Distribution of some adsorbed and intrinsic enzymes between the mucosal cells of the rat small intestine and the apical glycocalyx separated from them. FEBS Lett. 104:35-38 (1979).

    Google Scholar 

  15. A. Rambourg and C. P. Leblond. Electron microscope observations on the carbohydrate-rich cell coat present at the surface of cells in the rat. J. Cell Biol. 32:27-53 (1967).

    Google Scholar 

  16. O. N. Kovbasnjuk and K. R. Spring. The apical membrane glycocalyx of MDCK cells. J. Membr. Biol. 176:19-29 (2000).

    Google Scholar 

  17. J. D. Esko. Proteoglycans and glycosaminoglycans. In: A. Varki, R. Cummings, J. Esko, H. Freeze, G. Hart and J. Marth (eds.). Essentials of Glycobiology Cold Spring Harbor Laboratory Press, New York 1999, pp. 145-170.

    Google Scholar 

  18. J. P. F. Bai. Subcellular distribution of proteolytic activities degrading bioactive peptides and analogues in the rat small intestinal and colonic enterocytes. J. Pharm. Pharmacol. 8:671-675 (1994).

    Google Scholar 

  19. C. B. S. Henry and B. R. Duling. Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am. J. Physiol. 277:H508-H514 (1999).

    Google Scholar 

  20. V. H. Huxley and D. A. Williams. Role of a glycocalyx on coronary arteriole permeability to proteins: evidence from enzyme treatments. Am. J. Physiol. 278:H1177-H1185 (2000).

    Google Scholar 

  21. R. D. Ennis, L. Borden, and W. A. Lee. The effects of permeation enhancers on the surface morphology of the rat nasal mucosa: a scanning electron microscopy study. Pharm. Res. 7:468-475 (1990).

    Google Scholar 

  22. E. S. Swenson, W. B. Milisen, and W. Curatolo. Intestinal permeability enhancement: efficacy, acute local toxicity, and reversibility. Pharm. Res. 11:1132-1142 (1994).

    Google Scholar 

  23. M. Bendayan, E. Ziv, D. Gingras, R. Ben-Sasson, H. Bar-On, and M. Kidron. Biochemical and morpho-cytochemical evidence for the intestinal absorption of insulin in control and diabetic rats. Comparison between the effectiveness of duodenal and colon mucosa. Diabetologia 37:119-126 (1994).

    Google Scholar 

  24. J. J. M. Bergeron, R. Rachubinski, N. Searle, D. Borts, R. Sikstrom, and B. I. Posner. Polypeptide hormone receptors in vivo. J. Histochem. Cytochem. 28:824-835 (1980).

    Google Scholar 

  25. M. E. Forgue-Lafitte, M. R. Marescot, M. C. Chamblier, and G. Rosselin. Evidence for the presence of insulin binding sites in isolated rat intestinal epithelial cells. Diabetologia 19:373-378 (1980).

    Google Scholar 

  26. M. D. Fernandez-Moreno, M. Serrano-Rios, and J. C. Prieto. Identification of insulin receptors in epithelial cells from duodenum, jejunum, ileum, caecum, colon and rectum in the rat. Diabete Metab. 13:135-139 (1987).

    Google Scholar 

  27. Y. S. Quan, T. Fujita, D. Tohara, M. Tsuji, M. Kohyama, and A. Yamamoto. Transport kinetics of leucine enkephalin across Caco-2 monolayers: quantitative analysis for contribution of enzymatic and transport barrier. Life Sci. 64:1243-1252 (1999).

    Google Scholar 

  28. B. Forbes, C. G. Wilson, and M. Gumbleton. Temporal dependence of ectopeptidase expression in alveolar epithelial cell culture: implications for study of peptide absorption. Int. J. Pharm. 180:225-234 (1999).

    Google Scholar 

  29. F. Y. Liu, D. O. Kildsig, and A. K. Mitra. Pulmonary biotransformation of insulin in rat and rabbit. Life Sci. 51:1683-1689 (1992).

    Google Scholar 

  30. L. L. Chang and J. P. F. Bai. Evidence for the existence of insulin-degrading enzyme on the brush-border membranes of rat enterocytes. Pharm. Res. 13:801-803 (1996).

    Google Scholar 

  31. A. M. Ugolev and P. D. Laey. Membrane digestion. A concept of enzymic hydrolysis on cell membranes. Biochim. Biophys. Acta 300:105-128 (1973).

    Google Scholar 

  32. P. Heldin and H. Pertoft. Synthesis and assembly of the hyaluronan-containing coats around normal human mesothelial cells. Exp. Cell Res. 208:422-429 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariko Morishita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morishita, M., Aoki, Y., Sakagami, M. et al. In Situ Ileal Absorption of Insulin in Rats: Effects of Hyaluronidase Pretreatment Diminishing the Mucous/Glycocalyx Layers. Pharm Res 21, 309–316 (2004). https://doi.org/10.1023/B:PHAM.0000016244.88820.28

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000016244.88820.28

Navigation