Skip to main content
Log in

Induction of Cell Death by Saponin and Antigen Delivery

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Saponin is the major component in the formation of immune stimulating complex (ISCOM), a potent adjuvant able to induce both humoral and cellular immune reactions. The immunogenicity induced by saponin, however, has been unclear. The objective of this study was to investigate the apoptotic and necrotic effects induced by saponin in EL4 mouse lymphoma cells, expected to be a possible mechanism of the cytotoxic T-lymphocyte (CTL) effect elicited by the ISCOM.

Methods. EL4 cells were treated with saponin, and viability of the cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl- tetrazolium bromide (MTT) and lactate dehydrogenase release assays. Fluorescence microscopy was used to detect the morphological changes by staining saponin-treated cells with Hoechst 33342. Extent of apoptosis and necrosis was determined by Annexin V-FITC/propidium iodide staining, followed by flow cytometric analysis. Dendritic cells were cultured with either saponin-protein complexes or saponin-treated cells and analyzed by flow cytometry.

Results. Treatment of EL4 cells with saponin resulted in concentration-dependent cytotoxicity and the appearance of the hypodiploid DNA peak. Cells treated with saponin showed highly condensed chromatin when stained with fluorescent DNA-binding dye Hoechst 33342. Analysis of EL4 cells by flow cytometry after Annexin V/pro- pidium iodide staining demonstrated that saponin induced both apoptosis and necrosis. Pretreatment of EL4 cells with zVAD-fmk, a broad-range caspase inhibitor, did not prevent cell death induced by saponin, indicating the non-caspase-dependent cell death. Dendritic cells were shown to phagocytose both the antigen-saponin complexes and the saponin-induced dead cells.

Conclusions. Results obtained in this study demonstrated that saponin induced both apoptosis and necrosis in EL4 cells. These events are critical for antigen processing and presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. M. Kovacsovics-Bankowski and K. L. Rock. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 267:243-246 (1995).

    Google Scholar 

  2. C. C. Norbury, L. J. Hewlett, A. R. Prescott, N. Shastri, and C. Watts. Class I MHC presentation of exogenous soluble antigen via macropinocytosis in bone marrow macrophages. Immunity 3:783-791 (1995).

    Google Scholar 

  3. C. Reis e Sousa and R. N. Germain. Major histocompatibility complex class I presentation of peptides derived from soluble exogenous antigen by a subset of cells engaged in phagocytosis. J. Exp. Med. 182:841-851 (1995).

    Google Scholar 

  4. S. Raychaudhuri, M. Tonks, F. Carbone, T. Ryskamp, W. J. Morrow, and N. Hanna. Induction of antigen-specific class I-restricted cytotoxic T cells by soluble proteins in vivo. Proc. Natl. Acad. Sci. U. S. A. 89:8308-8312 (1992).

    Google Scholar 

  5. N. A. Sheikh, P. Rajananthanan, G. S. Attard, and W. J. Morrow. Generation of antigen specific CD8+ cytotoxic T cells following immunization with soluble protein formulated with novel glycoside adjuvants. Vaccine 17:2974-2982 (1999).

    Google Scholar 

  6. M. C. Villacres, S. Behboudi, T. Nikkila, K. Lovgren-Bengtsson, and B. Morein. Internalization of iscom-borne antigens and presentation under MHC class I or class II restriction. Cell. Immunol. 185:30-38 (1998).

    Google Scholar 

  7. R. Bomford, M. Stapleton, S. Winsor, J. E. Beesley, E. A. Jessup, K. R. Price, and G. R. Fenwick. Adjuvanticity and ISCOM formation by structurally diverse saponins. Vaccine 10:572-577 (1992).

    Google Scholar 

  8. M. Browning, G. Reid, R. Osborne, and O. Jarrett. Incorporation of soluble-antigens into Iscoms-HIV Gp120 iscoms induce virus neutralizing antibodies. Vaccine 10:585-590 (1992).

    Google Scholar 

  9. B. Morein, B. Sundquist, S. Hoglund, K. Dalsgaard, and A. Osterhaus. Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature 308:457-460 (1984).

    Google Scholar 

  10. B. Morein, J. Ekstrom, and K. Lovgren. Increased immunogenicity of a non-amphipathic protein (BSA) after inclusion into iscoms. J. Immunol. Methods 128:177-181 (1990).

    Google Scholar 

  11. B. Morein. The iscom: an immunostimulating system. Immunol. Lett. 25:281-283 (1990).

    Google Scholar 

  12. G. Reid. Soluble proteins incorporate into ISCOMs after covalent attachment of fatty acid. Vaccine 10:597-602 (1992).

    Google Scholar 

  13. S. Behboudi, B. Morein, and M. C. Villacres-Eriksson. Quillaja saponin formulations that stimulate proinflammatory cytokines elicit a potent acquired cell-mediated immunity. Scand. J. Immunol. 50:371-377 (1999).

    Google Scholar 

  14. B. Morein, M. Villacres-Eriksson, A. Sjolander, and K. L. Bengtsson. Novel adjuvants and vaccine delivery systems. Vet. Immunol. Immunopathol. 54:373-384 (1996).

    Google Scholar 

  15. J. J. Cohen, R. C. Duke, V. A. Fadok, and K. S. Sellins. Apoptosis and programmed cell death in immunity. Annu. Rev. Immunol. 10:267-293 (1992).

    Google Scholar 

  16. A. B. Kane. Redefining cell death. Am. J. Pathol. 146:1-2 (1995).

    Google Scholar 

  17. G. Majno and I. Joris. Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol. 146:3-15 (1995).

    Google Scholar 

  18. V. A. Fadok, D. L. Bratton, S. C. Frasch, M. L. Warner, and P. M. Henson. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ. 5:551-562 (1998).

    Google Scholar 

  19. B. Verhoven, R. A. Schlegel, and P. Williamson. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J. Exp. Med. 182:1597-1601 (1995).

    Google Scholar 

  20. M. J. Bevan. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J. Exp. Med. 143:1283-1288 (1976).

    Google Scholar 

  21. M. L. Albert, B. Sauter, and N. Bhardwaj. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392:86-89 (1998).

    Google Scholar 

  22. B. Sauter, M. L. Albert, L. Francisco, M. Larsson, S. Somersan, and N. Bhardwaj. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191:423-434 (2000).

    Google Scholar 

  23. T. Mosmann. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55-63 (1983).

    Google Scholar 

  24. C. Korzeniewski and D. M. Callewaert. An enzyme-release assay for natural cytotoxicity. J. Immunol. Methods 64:313-320 (1983).

    Google Scholar 

  25. I. Nicoletti, G. Migliorati, M. C. Pagliacci, F. Grignani, and C. Riccardi. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 139:271-279 (1991).

    Google Scholar 

  26. F. Belloc, P. Dumain, M. R. Boisseau, C. Jalloustre, J. Reiffers, P. Bernard, and F. Lacombe. A flow cytometric method using Hoechst 33342 and propidium iodide for simultaneous cell cycle analysis and apoptosis determination in unfixed cells. Cytometry 17:59-65 (1994).

    Google Scholar 

  27. G. Koopman, C. P. Reutelingsperger, G. A. Kuijten, R. M. Keehnen, S. T. Pals, and M. H. van Oers. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415-1420 (1994).

    Google Scholar 

  28. K. Inaba, M. Inaba, N. Romani, H. Aya, M. Deguchi, S. Ikehara, S. Muramatsu, and R. M. Steinman. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176:1693-1702 (1992).

    Google Scholar 

  29. S. Behboudi, B. Morein, and M. Villacres-Eriksson. In vitro activation of antigen-presenting cells (APC) by defined composition of Quillaja saponaria Molina triterpenoids. Clin. Exp. Immunol. 105:26-30 (1996).

    Google Scholar 

  30. S. Behboudi, B. Morein, and M. Villacres-Eriksson. In vivo and in vitro induction of IL-6 by Quillaja saponaria molina triterpenoid formulations. Cytokine 9:682-687 (1997).

    Google Scholar 

  31. F. R. Carbone, C. Kurts, S. R. Bennett, J. F. Miller, and W. R. Heath. Cross-presentation: a general mechanism for CTL immunity and tolerance. Immunol. Today 19:368-373 (1998).

    Google Scholar 

  32. Z. Darzynkiewicz, G. Juan, X. Li, W. Gorczyca, T. Murakami, and F. Traganos. Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 27:1-20 (1997).

    Google Scholar 

  33. M. Bellone, G. Iezzi, P. Rovere, G. Galati, A. Ronchetti, M. P. Protti, J. Davoust, C. Rugarli, and A. A. Manfredi. Processing of engulfed apoptotic bodies yields T cell epitopes. J. Immunol. 159:5391-5399 (1997).

    Google Scholar 

  34. P. Rovere, C. Vallinoto, A. Bondanza, M. C. Crosti, M. Rescigno, P. Ricciardi-Castagnoli, C. Rugarli, and A. A. Manfredi. Bystander apoptosis triggers dendritic cell maturation and antigen-presenting function. J. Immunol. 161:4467-4471 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Wun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, CA., Yang, YW. Induction of Cell Death by Saponin and Antigen Delivery. Pharm Res 21, 271–277 (2004). https://doi.org/10.1023/B:PHAM.0000016239.04067.66

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000016239.04067.66

Navigation