Order

, Volume 20, Issue 3, pp 173–183 | Cite as

Obituary: Ivan Rival

  • Dwight Duffus
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Research Articles

  1. 1.
    Alzohairi, M., Rival, I. and Kostochka, A.: The pagenumber of spherical lattices is unbounded, Arab J. Math. Sci. 7(1) (2001), 79–82.MATHMathSciNetGoogle Scholar
  2. 2.
    Lee, J. G., Liu, W.-P., Nowakowski, R. and Rival, I.: Dimension invariance of subdivisions, Bull. Austral. Math. Soc. 63(1) (2001), 141–150.MATHMathSciNetGoogle Scholar
  3. 3.
    Hashemi, S. M., Rival, I. and Kisielewicz, A.: The complexity of upward drawings on spheres, Order 14(4) (1997/98), 327–363.MathSciNetGoogle Scholar
  4. 4.
    Grätzer, G., Rival, I. and Zaguia, N.: A correction to: “Small representations of finite distributive lattices as congruence lattices,” Proc. Amer. Math. Soc. 126(8) (1998), 2509–2510.MathSciNetGoogle Scholar
  5. 5.
    Ewacha, K., Rival, I. and Zaguia, N.: Unimodality, linear extensions and width two orders, Discrete Math. (1997).Google Scholar
  6. 6.
    Ewacha, K., Rival, I. and Zaguia, N.: Approximating the number of linear extensions, in Orders, Algorithms and Applications (Lyon, 1994), Theoret. Comput. Sci. 175(2) (1997), 282MATHMathSciNetGoogle Scholar
  7. 7.
    Fofanova, T., Rival, I. and Rutkowski, A.: Dimension two, fixed points and dismantlable ordered sets, Order 13(3) (1996), 245–253.MATHMathSciNetGoogle Scholar
  8. 8.
    Hashemi, S. M., Kisielewicz, A. and Rival, I.: Upward drawings on planes and spheres (extended abstract), in Graph Drawing (Passau, 1995), Lecture Notes in Comput. Sci. 1027, Springer, Berlin, 1996, pp. 277–286.Google Scholar
  9. 9.
    Alzohairi, M. and Rival, I.: Series-parallel planar ordered sets have pagenumber two, Graph Drawing' 96, September 18–20, 1996, Berkeley, California.Google Scholar
  10. 10.
    Rival, I.: Order, ice and surfaces, in Lattice Theory and its Applications (Darmstadt, 1991), Res. Exp. Math. 23, Heldermann, Lemgo, 1995, pp. 211–218.Google Scholar
  11. 11.
    Pouzet, M., Reuter, K., Rival, I. and Zaguia, N.: A generalized permutahedron, Algebra Universalis 34(4) (1995), 496–509.MATHMathSciNetGoogle Scholar
  12. 12.
    Liu, W.-P., Rival, I. and Zaguia, N.: Automorphisms, isotone self-maps and cycle-free orders, in Combinatorics of Ordered Sets (Oberwolfach, 1991), Discrete Math. 144(1–3) (1995), 59–66.MATHMathSciNetGoogle Scholar
  13. 13.
    Grant, K., Nowakowski, R. J. and Rival, I.: The endomorphism spectrum of an ordered set, Order 12(1) (1995), 45–55.MATHMathSciNetGoogle Scholar
  14. 14.
    Rival, I. and Zaguia, N.: Perpendicular orders, Discrete Math. 137(1–3) (1995), 303–313.MATHMathSciNetGoogle Scholar
  15. 15.
    Rival, I. and Zaguia, N.: Images of simple lattice polynomials, Algebra Universalis 33(1) (1995), 10–14.MATHMathSciNetGoogle Scholar
  16. 16.
    Rival, I. and Rutkowski, A.: Does almost every isotone, self-map have a fixed point?, in Extremal Problems for Finite Sets (Visegrd, 1991), Bolyai Soc. Math. Stud. 3, János Bolyai Math. Soc., Budapest, 1994, pp. 413–422.Google Scholar
  17. 17.
    Jourdan, G.-V., Rival, I. and Zaguia, N.: Conjectures and constructions about perpendiculars pairs – by experiment, International Conference Formal Power Series and Algebraic Combinatorics' 95, Marne-la-Vallée, France, June 1995.Google Scholar
  18. 18.
    Jourdan, G.-V., Rival, I. and Zaguia, N.: Order explorer, a system to see and do in four dimensions, International Conference on Ordinal and Symbolic Data Analysis' 95, Paris, France, June 1995.Google Scholar
  19. 19.
    Grätzer, G., Rival, I. and Zaguia, N.: Small representations of finite distributive lattices as congruence lattices, Proc. Amer. Math. Soc. 123(7) (1995), 1959–1961.MATHMathSciNetGoogle Scholar
  20. 20.
    Hashemi, S. M. and Rival, I.: Upward drawings to fit surfaces, in Orders, Algorithms, and Applications (Lyon, 1994), Lecture Notes in Comput. Sci. 831, Springer, Berlin, 1994, pp. 53–58.Google Scholar
  21. 21.
    Jourdan, G.-V., Rival, I. and Zaguia, N.: Upward drawing on the plane grid using less ink, Graph Drawing' 94, Princeton, October 1994.Google Scholar
  22. 22.
    Fon-Der-Flaass, D. and Rival, I.: Collecting information in graded ordered sets, Parallel Process. Lett. 3(3) (1993), 253–260.MathSciNetGoogle Scholar
  23. 23.
    Kisielewicz, A. and Rival, I.: Every triangle-free planar graph has a planar upward drawing, Order 10(1) (1993), 1–16.MATHMathSciNetGoogle Scholar
  24. 24.
    Rival, I.: Reading, drawing, and order, in Algebras and Orders (Montreal, PQ, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 389, Kluwer Acad. Publ., Dordrecht, 1993, pp. 359–404.Google Scholar
  25. 25.
    Rival, I.: Order, invariance and visibility, in Words, Languages and Combinatorics (Kyoto, 1990), World Sci. Publishing, River Edge, NJ, 1992, pp. 444–453.Google Scholar
  26. 26.
    Rival, I. and Urrutia, J.: Representing orders by moving figures in space, in Algebraic Graph Theory (Leibnitz, 1989), Discrete Math. 109(1–3) (1992), 255–263.MATHMathSciNetGoogle Scholar
  27. 27.
    Nowakowski, R., Rival, I. and Urrutia, J.: Lattices contained in planar orders are planar, Algebra Universalis 29(4) (1992), 580–588.MATHMathSciNetGoogle Scholar
  28. 28.
    Rival, I. and Stanford, M.: Algebraic aspects of partition lattices, in Matroid Applications, Encyclopedia Math. Appl. 40, Cambridge Univ. Press, Cambridge, 1992, pp. 106–122.Google Scholar
  29. 29.
    Foldes, S., Rival, I. and Urrutia, J.: Light sources, obstructions and spherical orders, Discrete Math. 102(1) (1992), 13–23.MATHMathSciNetGoogle Scholar
  30. 30.
    Rival, I.: Order aspects of ice flow, in E. Boros and P. L. Hammer (eds), Workshop Combin. Optimiz. Sci. Tech., Rutgers, 1991, pp. 286–289.Google Scholar
  31. 31.
    Rival, I.: Problems about planar orders, in Finite and Infinite Combinatorics in Sets and Logic (Banff, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 411, Kluwer Acad. Publ., Dordrecht, 1991, pp. 337–347.Google Scholar
  32. 32.
    Ewacha, K., Li,W. X. and Rival, I.: Order, genus, and diagram invariance, Order 8(2) (1991), 107–113.MATHMathSciNetGoogle Scholar
  33. 33.
    Liu, W.-P. and Rival, I.: Enumerating orientations of ordered sets, in Combinatorics of Ordered Sets (Oberwolfach, 1988), Discrete Math. 88(2–3) (1991), 239–247.MATHMathSciNetGoogle Scholar
  34. 34.
    Czyzowicz, J., Rival, I. and Urrutia, J.: Galleries and light matchings: Fat cooperative guards, in Vision Geometry (Hoboken, NJ, 1989), Contemp. Math. 119, Amer. Math. Soc., Providence, RI, 1991, pp. 21–28.Google Scholar
  35. 35.
    Al-Thukair, F., Pelc, A., Rival, I. and Urrutia, J.: Motion planning, two-directional point representations, and ordered sets, SIAM J. Discrete Math. 4(2) (1991), 151–163.MATHMathSciNetGoogle Scholar
  36. 36.
    Reuter, K. and Rival, I.: Genus of orders and lattices, in Graph-Theoretic Concepts in Computer Science (Berlin, 1990), Lecture Notes in Comput. Sci. 484, Springer, Berlin, 1991, pp. 260–275.Google Scholar
  37. 37.
    Pelc, A. and Rival, I.: Orders with level diagrams, European J. Combin. 12(1) (1991), 61–68. 92c:06003.MATHMathSciNetGoogle Scholar
  38. 38.
    Liu, W.-P. and Rival, I.: Inversions, cuts, and orientations, Discrete Math. 87(2) (1991), 163–174.MATHMathSciNetGoogle Scholar
  39. 39.
    Rival, I.: Dilworth's covering theorem for modular lattices, in The Dilworth Theorems, Contemp. Math., Birkhäuser, Boston, MA, 1990, pp. 261–264.Google Scholar
  40. 40.
    Ewacha, K., Rival, I. and Steiner, G.: Permutation schedules for flow shops with precedence constraints, Oper. Res. 38(6) (1990), 1135–1139.MATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Czyzowicz, J., Pelc, A. and Rival, I.: Planar ordered sets of width two, Math. Slovaca 40(4) (1990), 375–388.MATHMathSciNetGoogle Scholar
  42. 42.
    Czyzowicz, J., Pelc, A., Rival, I. and Urrutia, J.: Crooked diagrams with few slopes, Order 7(2) (1990), 133–143.MATHMathSciNetGoogle Scholar
  43. 43.
    Quackenbush, R. W., Rival, I. and Rosenberg, I. G.: Clones, order varieties, near unanimity functions and holes, Order 7(3) (1990), 239–247.MATHMathSciNetGoogle Scholar
  44. 44.
    Czyzowicz, J., Pelc, A. and Rival, I.: Unfolding weighted consensus orders into consistent numerical scales, in Topics in Combinatorics and Graph Theory (Oberwolfach, 1990), Physica, Heidelberg, 1990, pp. 207–217.Google Scholar
  45. 45.
    Czyzowicz, J., Pelc, A. and Rival, I.: Drawing orders with few slopes, Discrete Math. 82(3) (1990), 233–250.MATHMathSciNetGoogle Scholar
  46. 46.
    Di Battista, G., Liu, W.-P. and Rival, I.: Bipartite graphs, upward drawings, and planarity, Inform. Process. Lett. 36(6) (1990), 317–322.MATHMathSciNetGoogle Scholar
  47. 47.
    Nowakowski, R., Rival, I. and Urrutia, J.: Representing orders on the plane by translating points and lines, in Computational Algorithms, Operations Research and Computer Science (Burnaby, BC, 1987), Discrete Appl. Math. 27(1–2) (1990), 147–156.MATHMathSciNetGoogle Scholar
  48. 48.
    Czyzowicz, J., Rival, I. and Urrutia, J.: Galleries, light matchings and visibility graphs, in Algorithms and Data Structures (Ottawa, ON, 1989), Lecture Notes in Comput. Sci. 382, Springer, Berlin, 1989, pp. 316–324.Google Scholar
  49. 49.
    Rival, I.: Graphical data structures for ordered sets, in Algorithms and Order (Ottawa, ON, 1987), Kluwer Acad. Publ., Dordrecht, 1989, pp. 3–31.Google Scholar
  50. 50.
    Bandelt, H.-J. and Rival, I.: Diagrams, orientations, and varieties, Order 6(2) (1989), 119–132.MATHMathSciNetGoogle Scholar
  51. 51.
    Pouzet, M. and Rival, I.: Is there a diagram invariant?, in Proceedings of the Oberwolfach Meeting “Kombinatorik” (1986), Discrete Math. 73(1–2) (1989), 181–188.MATHMathSciNetGoogle Scholar
  52. 52.
    Rival, I. and Urrutia, J.: Representing orders on the plane by translating convex figures, Order 4(4) (1988), 319–339.MATHMathSciNetGoogle Scholar
  53. 53.
    Nowakowski, R. and Rival, I.: Retract rigid Cartesian products of graphs, Discrete Math. 70(2) (1988), 169–184.MATHMathSciNetGoogle Scholar
  54. 54.
    Rival, I. and Zaguia, N.: Greedy linear extensions with constraints, in Special Issue: Ordered Sets (Oberwolfach, 1985), Discrete Math. 63(2–3) (1987), 249–260.MATHMathSciNetGoogle Scholar
  55. 55.
    Jégou, R., Nowakowski, R. and Rival, I.: The diagram invariant problem for planar lattices, Acta Sci. Math. (Szeged) 51(1–2) (1987), 103–121.MATHMathSciNetGoogle Scholar
  56. 56.
    Hell, P. and Rival, I.: Absolute retracts and varieties of reflexive graphs, Canad. J. Math. 39(3) (1987), 544–567.MATHMathSciNetGoogle Scholar
  57. 57.
    Rival, I. and Zaguia, N.: Effective constructions of cutsets for finite and infinite ordered sets, Acta Sci. Math. (Szeged) 51(1–2) (1987), 191–207.MATHMathSciNetGoogle Scholar
  58. 58.
    Lonc, Z. and Rival, I.: Chains, antichains, and fibres, J. Combin. Theory Ser. A 44(2) (1987), 207–228.MATHMathSciNetGoogle Scholar
  59. 59.
    Jawhari, El M., Pouzet, M. and Rival, I.: A classification of reflexive graphs: The use of “holes”, Canad. J. Math. 38(6) (1986), 1299–1328.MATHMathSciNetGoogle Scholar
  60. 60.
    Rival, I. and Zaguia, N.: Constructing N-free, jump-critical ordered sets, in Proceedings of the Seventeenth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL,1986), Congr. Numer. 55 (1986), 199–204.MATHMathSciNetGoogle Scholar
  61. 61.
    Reuter, K. and Rival, I.: Subdiagrams equal in number to their duals, Algebra Universalis 23(1) (1986), 70–76.MATHMathSciNetGoogle Scholar
  62. 62.
    Rival, I. and Zaguia, N.: Constructing greedy linear extensions by interchanging chains, Order 3(2) (1986), 107–121.MATHMathSciNetGoogle Scholar
  63. 63.
    Ginsburg, J., Rival, I. and Sands, B.: Antichains and finite sets that meet all maximal chains, Canad. J. Math. 38(3) (1986), 619-632.MATHMathSciNetGoogle Scholar
  64. 64.
    Rival, I.: Stories about order and the letter N (en), in Combinatorics and Ordered Sets (Arcata, CA, 1985), Contemp. Math. 57, Amer. Math. Soc., Providence, RI, 1986, pp. 263–285.Google Scholar
  65. 65.
    Bandelt, H.-J. and Rival, I.: Classifying graphs by intersecting disks, J. Combin. Inform. System Sci. 10(1–2) (1985), 41–51.MATHMathSciNetGoogle Scholar
  66. 66.
    Nevermann, P. and Rival, I.: Holes in ordered sets, Graphs Combin. 1(4) (1985), 339–350.MATHMathSciNetGoogle Scholar
  67. 67.
    Rival, I.: Some order-theoretical ideas about scheduling, in IX Symposium on Operations Research. Part I. Sections 1–4 (Osnabrck, 1984), Methods Oper. Res. 49, Athenäum/Hain/Hanstein, Königstein, 1985, pp. 419–430. 90B35.Google Scholar
  68. 68.
    El-Zahar, M. H. and Rival, I.: Greedy linear extensions to minimize jumps, Discrete Appl. Math. 11(2) (1985), 143–156. (Reviewer: H. T. Lau).MATHMathSciNetGoogle Scholar
  69. 69.
    Rival, I.: The diagram, in Graphs and Order (Banff, Alta., 1984), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 147, Reidel, Dordrecht, 1985, pp. 103–133.Google Scholar
  70. 70.
    El-Zahar, M. H. and Rival, I.: Examples of jump-critical ordered sets, SIAM J. Algebraic Discrete Methods 6(4) (1985), 713–720.MATHMathSciNetGoogle Scholar
  71. 71.
    Rival, I. and Zaguia, N.: Antichain cutsets, Order 1(3) (1985), 235–247.MATHMathSciNetGoogle Scholar
  72. 72.
    Rival, I.: Linear extensions of finite ordered sets, in Orders: Description and Roles (L'Arbresle, 1982), North-Holland Math. Stud. 99, North-Holland, Amsterdam, 1984, pp. 355–370.Google Scholar
  73. 73.
    Pouzet, M. and Rival, I.: Every countable lattice is a retract of a direct product of chains, Algebra Universalis 18(3) (1984), 295–307.MATHMathSciNetGoogle Scholar
  74. 74.
    Pouzet, M. and Rival, I.: Quotients of complete ordered sets, Algebra Universalis 17(3) (1983), 393–405.MATHMathSciNetGoogle Scholar
  75. 75.
    Rival, I.: Optimal linear extensions by interchanging chains, Proc. Amer. Math. Soc. 89(3) (1983), 387–394.MATHMathSciNetGoogle Scholar
  76. 76.
    Nowakowski, R. and Rival, I.: The smallest graph variety containing all paths, Discrete Math. 43(2–3) (1983), 223–234.MATHMathSciNetGoogle Scholar
  77. 77.
    Nowakowski, R. and Rival, I.: On a class of isometric subgraphs of a graph, Combinatorica 2(1) (1982), 79–90.MATHMathSciNetGoogle Scholar
  78. 78.
    Duffus, D. and Rival, I.: Graphs orientable as distributive lattices, Proc. Amer. Math. Soc. 88(2) (1983), 197–200.MATHMathSciNetGoogle Scholar
  79. 79.
    Rival, I. and Sands, B.: Pictures in lattice theory, in Algebraic and Geometric Combinatorics, North-Holland Math. Stud. 65, North-Holland, Amsterdam, 1982, pp. 341–355.Google Scholar
  80. 80.
    Rival, I. and Sands, B.: How many four-generated simple lattices?, in Universal Algebra and Applications (Warsaw, 1978), Banach Center Publ. 9, PWN, Warsaw, 1982, pp. 67–72.Google Scholar
  81. 81.
    Galvin, F., Rival, I. and Sands, B.: A Ramsey-type theorem for traceable graphs, J. Combin. Theory Ser. B 33(1) (1982), 7–16.MATHMathSciNetGoogle Scholar
  82. 82.
    Rival, I.: The retract construction, in Ordered Sets (Banff, Alta., 1981), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 83, Reidel, Dordrecht–Boston, MA, 1982, pp. 97–122.Google Scholar
  83. 83.
    Davey, B. A. and Rival, I.: Exponents of lattice-ordered algebras, Algebra Universalis 14(1) (1982), 87–98.MATHMathSciNetGoogle Scholar
  84. 84.
    Duffus, D., Rival, I. and Winkler, P.: Minimizing setups for cycle-free ordered sets, Proc. Amer. Math. Soc. 85(4) (1982), 509–513.MATHMathSciNetGoogle Scholar
  85. 85.
    Pouzet, M. and Rival, I.: Which ordered sets have a complete linear extension? Canad. J. Math. 33(5) (1981), 1245–1254.MATHMathSciNetGoogle Scholar
  86. 86.
    Rival, I., Ruckelshausen, W. and Sands, B.: On the ubiquity of herringbones in finitely generated lattices, Proc. Amer. Math. Soc. 82(3) (1981), 335–340.MATHMathSciNetGoogle Scholar
  87. 87.
    Rival, I. and Wille, R.: The smallest order variety containing all chains, Discrete Math. 35 (1981), 203–212.MATHMathSciNetGoogle Scholar
  88. 88.
    Duffus, D., Pouzet, M. and Rival, I.: Complete ordered sets with no infinite antichains, Discrete Math. 35 (1981), 39–52.MATHMathSciNetGoogle Scholar
  89. 89.
    Duffus, D. and Rival, I.: A structure theory for ordered sets, DiscreteMath. 35 (1981), 53–118.MATHMathSciNetGoogle Scholar
  90. 90.
    Rival, I.: The problem of fixed points in ordered sets, in Combinatorics 79 (Proc. Colloq., Univ. Montréal, Montreal, Que., 1979), Part I, Ann. Discrete Math. 8 (1980), 283–292.MATHMathSciNetCrossRefGoogle Scholar
  91. 91.
    Duffus, D., Rival, I. and Simonovits, M.: Spanning retracts of a partially ordered set, Discrete Math. 32(1) (1980), 1–7.MATHMathSciNetGoogle Scholar
  92. 92.
    Bisztriczky, T. and Rival, I.: Continuous, slope-preserving maps of simple closed curves, Canad. J. Math. 32(5) (1980), 1102–1113.MATHMathSciNetGoogle Scholar
  93. 93.
    Rival, I. and Sands, B.: On the adjacency of vertices to the vertices of an infinite subgraph, J. London Math. Soc. (2) 21(3) (1980), 393–400.MATHMathSciNetGoogle Scholar
  94. 94.
    Duffus, D., Poguntke,W. and Rival, I.: Retracts and the fixed point problem for finite partially ordered sets, Canad. Math. Bull. 23(2) (1980), 231–236.MATHMathSciNetGoogle Scholar
  95. 95.
    Björner, A. and Rival, I.: A note on fixed points in semimodular lattices, Discrete Math. 29(3) (1980), 245–250.MATHMathSciNetGoogle Scholar
  96. 96.
    Duffus, D. and Rival, I.: A note on weak embeddings of distributive lattices, Algebra Universalis 10(2) (1980), 258–259.MATHMathSciNetGoogle Scholar
  97. 97.
    Jónsson, B. and Rival, I.: Lattice varieties covering the smallest nonmodular variety, Pacific J. Math. 82(2) (1979), 463–478.MATHMathSciNetGoogle Scholar
  98. 98.
    Bollobás, B. and Rival, I.: The maximal size of the covering graph of a lattice, Algebra Universalis 9(3) (1979), 371–373.MATHMathSciNetGoogle Scholar
  99. 99.
    Rival, I. and Sands, B.: Planar sublattices of a free lattice. II, Canad. J. Math. 31(1) (1979), 17–34.MATHMathSciNetGoogle Scholar
  100. 100.
    Rival, I. and Wille, R.: Lattices freely generated by partially ordered sets: Which can be “drawn”? J. Reine Angew. Math. 310 (1979), 56–80.MathSciNetGoogle Scholar
  101. 101.
    Duffus, D. and Rival, I.: Retracts of partially ordered sets, J. Austral. Math. Soc. Ser. A 27(4) (1979), 495–506.MATHMathSciNetGoogle Scholar
  102. 102.
    Nowakowski, R. and Rival, I.: Fixed-edge theorem for graphs with loops, J. Graph Theory 3(4) (1979), 339–350.MATHMathSciNetGoogle Scholar
  103. 103.
    Rabinovitch, I. and Rival, I.: The rank of a distributive lattice, Discrete Math. 25(3) (1979), 275–279.MATHMathSciNetGoogle Scholar
  104. 104.
    Duffus, D. and Rival, I.: Separable subsets of a finite lattice, J. Combin. Theory Ser. A 25(2) (1978), 188–192.MATHMathSciNetGoogle Scholar
  105. 105.
    Rival, I. and Sands, B.: Planar sublattices of a free lattice. I, Canad. J. Math. 30(6) (1978), 1256–1283.MATHMathSciNetGoogle Scholar
  106. 106.
    Nowakowski, R. and Rival, I.: Distributive cover-preserving sublattices of modular lattices, Nanta Math. 11(2) (1978), 110–123.MATHMathSciNetGoogle Scholar
  107. 107.
    Rival, I. and Sands, B.: A note on the congruence lattice of a finitely generated algebra, Proc. Amer. Math. Soc. 72(3) (1978), 451–455.MATHMathSciNetGoogle Scholar
  108. 108.
    Duffus, D. and Rival, I.: Crowns in dismantlable partially ordered sets, in Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, Colloq. Math. Soc. János Bolyai 18, North-Holland, Amsterdam, 1978, pp. 271–292.Google Scholar
  109. 109.
    Duffus, D. and Rival, I.: A logarithmic property for exponents of partially ordered sets, Canad. J. Math. 30(4) (1978), 797–807.MATHMathSciNetGoogle Scholar
  110. 110.
    Gaskill, H. S. and Rival, I.: An exchange property for modular lattices, Algebra Universalis 8(3) (1978), 354–356.MATHMathSciNetGoogle Scholar
  111. 111.
    Duffus, D., Jónsson, B. and Rival, I.: Structure results for function lattices, Canad. J. Math. 30(2) (1978), 392–400.MATHMathSciNetGoogle Scholar
  112. 112.
    Davey, B. A., Duffus, D., Quackenbush, R. W. and Rival, I.: Exponents of finite simple lattices. J. London Math. Soc. (2) 17(2) (1978), 203–221.MATHMathSciNetGoogle Scholar
  113. 113.
    Duffus, D. and Rival, I.: Path length in the covering graph of a lattice, Discrete Math. 19(2) (1977), 139–158.MATHMathSciNetGoogle Scholar
  114. 114.
    Poguntke, W. and Rival, I.: A theorem on finite sublattices of free lattices, in Contributions to Universal Algebra (Colloq., József Attila Univ., Szeged, 1975), Colloq. Math. Soc. János Bolyai 17, North-Holland, Amsterdam, 1977, pp. 357–361.Google Scholar
  115. 115.
    Nowakowski, R. and Rival, I.: The spectrum of a finite lattice: Breadth and length techniques, Canad. Math. Bull. 20(3) (1977), 319–329.MATHMathSciNetGoogle Scholar
  116. 116.
    Jónsson, B. and Rival, I.: Critical edges in subdirectly irreducible lattices, Proc. Amer. Math. Soc. 66(2) (1977), 194–196.MATHMathSciNetGoogle Scholar
  117. 117.
    Rival, I.: Combinatorial inequalities for semimodular lattices of breadth two, Algebra Universalis 6(3) (1976), 303–311.MATHMathSciNetGoogle Scholar
  118. 118.
    Rival, I.: A note on linear extensions of irreducible elements in a finite lattice, Algebra Universalis 6(2) (1976), 99–103.MATHMathSciNetGoogle Scholar
  119. 119.
    Rival, I.: A fixed point theorem for finite partially ordered sets, J. Combin. Theory Ser. A 21(3) (1976), 309–318.MATHMathSciNetGoogle Scholar
  120. 120.
    Poguntke, W. and Rival, I.: Finite four-generated simple lattices contain all finite lattices, Proc. Amer. Math. Soc. 55(1) (1976), 22–24.MATHMathSciNetGoogle Scholar
  121. 121.
    Davey, B. A. and Rival, I.: Finite sublattices of three-generated lattices, J. Austral. Math. Soc. Ser. A 21(2) (1976), 171–178.MATHMathSciNetCrossRefGoogle Scholar
  122. 122.
    Ganter, B. and Rival, I.: An arithmetical theorem for modular lattices, Algebra Universalis 5(3) (1975), 395–396.MATHMathSciNetGoogle Scholar
  123. 123.
    Davey, B. A., Poguntke, W. and Rival, I.: A characterization of semi-distributivity, Algebra Universalis 5 (1975), 72–75.MATHMathSciNetGoogle Scholar
  124. 124.
    Rival, I.: Sublattices of modular lattices of finite length, Canad. Math. Bull. 18(1) (1975), 95–98.MATHMathSciNetGoogle Scholar
  125. 125.
    Kelly, D. and Rival, I.: Planar lattices, Canad. J. Math. 27(3) (1975), 636–665.MATHMathSciNetGoogle Scholar
  126. 126.
    Rival, I. and Sands, B.:Weak embeddings and embeddings of finite distributive lattices, Arch. Math. (Basel) 26(4) (1975), 346–352.MATHMathSciNetGoogle Scholar
  127. 127.
    Kelly, D. and Rival, I.: Certain partially ordered sets of dimension three, J. Combin. Theory Ser. A 18 (1975), 239–242.MATHMathSciNetGoogle Scholar
  128. 128.
    Kelly, D. and Rival, I.: Crowns, fences, and dismantlable lattices, Canad. J. Math. 26 (1974), 1257–1271.MATHMathSciNetGoogle Scholar
  129. 129.
    Poguntke, W. and Rival, I.: Finite sublattices generated by order-isomorphic subsets, Arch. Math. (Basel) 25 (1974), 225–230.MATHMathSciNetGoogle Scholar
  130. 130.
    Rival, I.: Maximal sublattices of finite distributive lattices. II, Proc. Amer. Math. Soc. 44 (1974), 263–268.MATHMathSciNetGoogle Scholar
  131. 131.
    Rival, I.: Lattices with doubly irreducible elements, Canad. Math. Bull. 17 (1974), 91–95.MATHMathSciNetGoogle Scholar
  132. 132.
    Antonius, R. and Rival, I.: A note onWhitman's property for free lattices, Algebra Universalis 4 (1974), 271–272.MATHMathSciNetGoogle Scholar
  133. 133.
    Ganter, B. and Rival, I.: Dilworth's covering theorem for modular lattices: A simple proof, Algebra Universalis 3 (1973), 348–350.MATHMathSciNetGoogle Scholar
  134. 134.
    Rival, I.: Maximal sublattices of finite distributive lattices, Proc. Amer. Math. Soc. 37 (1973), 417–420.MATHMathSciNetGoogle Scholar
  135. 135.
    Rival, I.: Projective images of modular (distributive, complemented) lattices are modular (distributive, complemented), Algebra Universalis 2 (1972), 395.MATHMathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Dwight Duffus

There are no affiliations available

Personalised recommendations