, Volume 20, Issue 3, pp 229–238 | Cite as

Truncated Distributive Lattices: Conceptual Structures of Simple-Implicational Theories

  • Rudolf Wille


Logical relationships in everyday human thought are predominantly inferences with one-element premises. This becomes apparent in the practice of Formal Concept Analysis by the frequent occurrence of truncated distributive lattices as concept lattices. This paper gives a mathematization of the underlying everyday theories of logical relationships and elaborates useful mathematical results, in particular about algorithmically drawing concept lattices which correspond to the everyday logical theories.

distributive lattices formal concept analysis implications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ganter, B. and Wille, R.: Conceptual scaling, In: F. Roberts (ed.), Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, Springer, Heidelberg, 1989, pp. 139–167.Google Scholar
  2. 2.
    Ganter, B. and Wille, R.: Formal Concept Analysis: Mathematical Foundations, Springer, Heidelberg, 1999.Google Scholar
  3. 3.
    Karcher, G. L.: Kontrastive Untersuchungen von Wortfeldern im Deutschen und Englischen, Peter Lang, Frankfurt, 1979.Google Scholar
  4. 4.
    Kipke, U. and Wille, R.: Formale Begriffsanalyse erläutert an einem Wortfeld, LDV-Forum 5 (1987), 31–36.Google Scholar
  5. 5.
    Langsdorf, R., Skorsky, M., Wille, R. and Wolf, A.: An approach to automatic drawing of concept lattices, In: K. Denecke and O. Lüders (eds), General Algebra and Applications in Discrete Mathematics, Shaker Verlag, Aachen, 1997, pp. 125–136.Google Scholar
  6. 6.
    Rival, I. and Wille, R.: Lattices freely generated by partially ordered sets: Which can be “drawn”? J. Reine Angew. Math. 310 (1979), 56–80.MathSciNetGoogle Scholar
  7. 7.
    Strahringer, S. and Wille, R.: Conceptual knowledge processing with ordinal scales, In: G. Mineau and A. Fall (eds), Proceedings of the Second International Symposium on Knowledge Retrieval, Use and Storage for Effficiency, Vancouver, 1997, pp. 14–29.Google Scholar
  8. 8.
    Strahringer, S., Wille, R. and Wille, U.: Mathematical support of empirical theory building, In: H. Delugach and G. Stumme (eds), Conceptual Structures: Broadening the Base, Lecture Notes in Artificial Intelligence 2120, Springer, Heidelberg, 2001, pp. 169–186.Google Scholar
  9. 9.
    Wille, R.: Restructuring lattice theory: An approach based on hierarchies of concepts, In: I. Rival (ed.), Ordered Sets, Reidel, Dordrecht, 1982, pp. 445–470.Google Scholar
  10. 10.
    Wille, R.: Finite distributive lattices as concept lattices, Atti Inc. Logica Mathematica 2 (1985), 635–648.zbMATHGoogle Scholar
  11. 11.
    Wille, R.: Dependencies of many-valued attributes, In: H.-H. Bock (ed.), Classification and Related Methods of Data Analysis, North-Holland, Amsterdam, 1988, pp. 581–586.Google Scholar
  12. 12.
    Wille, R.: Laudatio anläßlich der Verleihung der Ehrendoktorwürde an Professor Garrett Birkhoff, In: K. A. Baker and R. Wille (eds), Lattice Theory and its Applications, Heldermann Verlag, Lemgo, 1995, pp. 1–6.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Rudolf Wille
    • 1
  1. 1.Technische Universität DarmstadtFachbereich MathematikDarmstadtGermany

Personalised recommendations