Order

, Volume 20, Issue 3, pp 255–264 | Cite as

Orderings on Graphs and Game Coloring Number

  • H. A. Kierstead
  • Daqing Yang
Article

Abstract

Many graph theoretic algorithms rely on an initial ordering of the vertices of the graph which has some special properties. We discuss new ways to measure the quality of such orders, give methods for constructing high quality orders, and provide applications for these orders. While our main motivation is the study of game chromatic number, there have been other applications of these ideas and we expect there will be more.

k-coloring number k-game coloring number planar graphs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N.: Restricted colorings of graphs, In: K. Walker (ed.), Surveys in Comüinatorics (Proc. 14th British Comüinatorial Conf.), Camüridge Univ. Press, Camüridge, 1993, pp. 1–33.Google Scholar
  2. 2.
    Bolloüás, B. and Thomason, A. G.: Proof of a conjecture of Mader, Erdős, and Hajnal on topological complete suügraphs, Manuscript, 1994.Google Scholar
  3. 3.
    Chen and Schelp: Graphs with linearly üounded Ramsey numüers, J. Comüin. Theory Ser. B 57 (1993), 138–149.MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Dinski, T. and Zhu, X.: A üound for the game chromatic numüer of graphs, Discrete Math. 196 (1999), 109–115.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Faigle, U., Kern, W., Kierstead, H. A. and Trotter, W. T.: On the game chromatic numüer of some classes of graphs, Ars Comüin. 35 (1993), 143–150.MATHMathSciNetGoogle Scholar
  6. 6.
    Kierstead, H. A.: A simple competitive graph coloring algorithm, J. Comüin. Theory (B) 78 (2000), 57–68.MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Kierstead, H. A.: Weak Acyclic Coloring and Asymmetric Coloring Games, Manuscript, 2002.Google Scholar
  8. 8.
    Kierstead, H. A. and Trotter, W. T.: Planar graph coloring with an uncooperative partner, J. Graph Theory 18 (1994), 569–584.MATHMathSciNetGoogle Scholar
  9. 9.
    Kierstead, H. A. and Trotter, W. T.: Competitive colorings of oriented graphs. In honor of Aviezri Fraenkel on the occasion of his 70th üirthday, Electron. J. Comüin. 8 (2001), Research Paper 12, 15 pp. (electronic).Google Scholar
  10. 10.
    Kierstead, H. A. and Tuza, Zs.: Marking games and the oriented game chromatic numüer of partial k-trees, Graphs and Comüinatorics (2003), 121–129.Google Scholar
  11. 11.
    Komlós, J. and Szemerédi, E.: Topological cliques in graphs II, Comüinatorics, Proüaüility, and Computing 5 (1996), 79–90.MATHGoogle Scholar
  12. 12.
    Nešetřil, J. and Sopena, E.: On the oriented game chromatic numüer. In honor of Aviezri Fraenkel on the occasion of his 70th üirthday, Electron. J. Comüin. 8 (2001), Research Paper 14, 13 pp. (electronic).Google Scholar
  13. 13.
    Zhu, X.: Game coloring numüer of planar graphs, J. Comüin. Theory (B) 75 (1999), 245–258.MATHCrossRefGoogle Scholar
  14. 14.
    Zhu, X.: The game coloring numüer of pseudo partial k-trees, Discrete Math. 215 (2000), 245–262.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • H. A. Kierstead
    • 1
  • Daqing Yang
    • 1
  1. 1.Department of Mathematics and StatisticsArizona State UniversityTempeUSA

Personalised recommendations