Skip to main content
Log in

A Particular Class of Partially Invariant Solutions of the Navier—Stokes Equations

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

One class of partially invariant solutions of the Navier—Stokes equations is studied here. This class of solutions is constructed on the basis of the four-dimensional algebra L 4 with the generators \(\begin{array}{*{20}c} {X_1 = \phi _1 \partial _x + \phi '_1 \partial _u - x\phi ''_1 \partial _p ,\quad X_2 = \phi _2 \partial _x + \phi '_2 \partial _u - x\phi ''_2 \partial _p ,} \\ {Y_1 = \psi _1 \partial _y + \psi '_1 \partial _v - y\psi ''_1 \partial _p ,\quad Y_2 = \psi _2 \partial _y + \psi '_2 \partial _v - y\psi ''_2 \partial _p .} \\ \end{array}\)

Systematic investigation of the case, where the Monge—Ampere equation (10) is hyperbolic (Lf z + k + l ≥ 0) is given. It is shown that this class of solutions is a particular case of the solutions with linear velocity profile with respect to one or two space variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ovsiannikov, L. V., Group Analysis of Differential Equations, Nauka, Moscow, 1978. [English translation, Ames, W.F. (ed.), published by Academic Press, New York, 1982].

    Google Scholar 

  2. Ibragimov, N. H., Elementary Lie Group Analysis and Ordinary Differential Equations, Wiley, Chichester, UK, 1999.

    Google Scholar 

  3. Ibragimov, N. H. (ed.), CRC Handbook of Lie Group Analysis of Differential Equations, CRC Press, Boca Raton, Florida, Vols 1–3, 1994–1996.

    Google Scholar 

  4. Bytev, V. O., ‘Group properties of the Navier—Stokes equations’, Chislennye Metody Mehaniki Sploshnoi Sredy (Novosibirsk) 3(3), 1972, 13–17.

    MathSciNet  Google Scholar 

  5. Pukhnachov, V. V., ‘Group properties of the Navier—Stokes equations in two-dimensional case’, Journal of Applied Mechanics and Technical Physics 1, 1960, 83–90.

    Google Scholar 

  6. Habirov, S. V., ‘Partially invariant solutions of equations of hydrodynamics. Exact solutions of differential equations and their assymptotics’. Russian Academy of Science, Ufa Scientific Center, Institute of Mathematics with Computertional Center, Ufa, 1993, pp. 42–49.

    Google Scholar 

  7. Pukhnachov, V. V., ‘Free boundary problems of the Navier—Stokes equations’, Doctoral thesis, Novosibirsk, 1974.

  8. Cantwell, B. J. Similarity transformations for the two-dimensional, unsteady, stream-function equation', Journal of Fluid Mechanics 85, 1978, 257–271.

    MATH  MathSciNet  Google Scholar 

  9. Lloyd, S. P., ‘The infinitesimal group of the Navier—Stokes equations’, Acta Mathemetica 38, 1981, 85–98.

    MATH  MathSciNet  Google Scholar 

  10. Boisvert, R. E., Ames, W. F., and Srivastava, U. N., ‘Group properties and new solutions of Navier—Stokes equations’, Journal of Engineering Mathematics 17, 1983, 203–221.

    MathSciNet  Google Scholar 

  11. Grauel, A. and Steeb, W.-H., ‘Similarity solutions of the Euler equation and the Navier—Stokes equations in two space dimensions’, International Journal of Theoretical Physics 24, 1985, 255–265.

    Article  MathSciNet  Google Scholar 

  12. Ibragimov, N. H. and Unal, G., ‘Equivalence transformations of Navier—Stokes equations’, Bulletin of the Technical University of Istanbul 47(1–2), 1994, 203–207.

    MathSciNet  Google Scholar 

  13. Popovych, R. O., ‘On Lie reduction of the Navier—Stokes equations’, Nonlinear Mathematical Physics 2(3–4), 1995, 301–311.

    MATH  MathSciNet  Google Scholar 

  14. Fushchich, W. I. and Popovych, R. O., ‘Symmetry reduction and exact solution of the Navier—Stokes equations’, Nonlinear Mathematical Physics 1(1), 1994, 75–113.

    MathSciNet  Google Scholar 

  15. Fushchich, W. I. and Popovych, R. O., ‘Symmetry reduction and exact solution of the Navier—Stokes equations’, Nonlinear Mathematical Physics 1(2), 1994, 158–188.

    MathSciNet  Google Scholar 

  16. Ludlow, D. K., Clarkson, P. A., and Bassom, A. P., ‘Similarity reduction and exact solutions for the two-dimensional incompressible Navier—Stokes equations’, Studies in Applied Mathematics 103, 1999, 183–240.

    Article  MathSciNet  Google Scholar 

  17. Ovsiannikov, L. V., ‘Partial invariance’, Doklady of Academy of Science of the USSR 186, 1969, 22–25.

    Google Scholar 

  18. Ovsiannikov, L. V., ‘Regular and irregular partially invariant solutions’, Doklady Russian Academii Nauk 343(2), 1995, 156–159.

    Google Scholar 

  19. Ovsiannikov, L. V. and Chupakhin, A. P., ‘Regular partially invariant submodels of gas dynamics equations’, Journal of Applied Mathematics and Mechanics 60(6), 1996, 990–999.

    MathSciNet  Google Scholar 

  20. Sidorov, A. F., Shapeev, V. P., and Yanenko, N. N., The Method of Differential Constraints and its Applications in Gas Dynamics, Nauka, Novosibirsk, 1984.

    Google Scholar 

  21. Meleshko, S. V., Classification of Solutions with Degenerate Hodograph of the Gas Dynamics and Plasticity Equations, Doctor of Science thesis, Institute of Mathematics and Mechanics, Ekaterinburg, 1991.

    Google Scholar 

  22. Meleshko, S. V., ‘One class of partial invariant solutions of plane gas flows’, Differential Equations 30(10), 1994, 1690–1693.

    MATH  MathSciNet  Google Scholar 

  23. Ovsiannikov, L. V., ‘Isobaric motions of a gas’, Differential Equations 30(10), 1994, 1792–1799.

    MathSciNet  Google Scholar 

  24. Ovsiannikov, L. V., ‘Special vortex’, Journal of Applied Mechanics and Technical Physics 36(3), 1995, 45–52.

    MathSciNet  Google Scholar 

  25. Chupakhin, A. P., ‘On barochronic motions of a gas’, Doklady of the Russian Academy of Science 352(5), 1997, 624–626.

    MATH  MathSciNet  Google Scholar 

  26. Grundland, A. M. and Lalague, L., ‘Invariant and partially invariant solutions of the equations describing a non-stationary and isotropic flow for an ideal and compressible fluid in (3 + 1) dimensions’, Journal of Physics A: Mathematical and General 29, 1996, 1723–1739.

    Article  MathSciNet  Google Scholar 

  27. Ludlow, D. K., Clarkson, P. A., and Bassom, A. P., ‘Nonclassical symmetry reductions of the three-dimensional incompressible Navier—Stokes equations’, Journal of Physics A: Mathematical and General 31, 1998, 7965–7980.

    Article  MathSciNet  Google Scholar 

  28. Sidorov, A. F., ‘On two classes of solutions of fluid and gas dynamics equations and their connection with theory of travelling waves’, Journal of Applied Mechanics and Technical Physics 30(2), 1989, 34–40.

    Article  MathSciNet  Google Scholar 

  29. Ulianov, O. N., Two Classes of Solutions of Nonlinear Equations of Continuum Mechanics, Ph.D. thesis, Ekaterinburg, Institute of Mathematics and Mechanics, 1992.

    Google Scholar 

  30. Meleshko, S. V. and Pukhnachov, V. V., ‘One class of partially invariant solutions of the Navier—Stokes equations’, Journal of Applied Mechanics and Technical Physics 40(2), 1999, 24–33.

    MathSciNet  Google Scholar 

  31. Meleshko, S. V., ‘Group classification of the equations of two-dimensional motions of a gas’, Journal of Applied Mathematics and Mechanics 58(4), 1995, 629–635.

    MathSciNet  Google Scholar 

  32. Meleshko, S. V., ‘Generalization of the equivalence transformations’, Journal of Nonlinear Mathematical Physics 3(1–2), 1996, 170–174.

    MATH  MathSciNet  Google Scholar 

  33. Herlt, E. and Stephani, H., ‘Invariance transformations of the class y” = F(x)y n of differential equations’, Journal Mathematics and Physics 33(12), 1992, 3983–3988.

    MathSciNet  Google Scholar 

  34. Rajagopal, K. R., ‘A class of exact solutions to the Navier-Stokes equations’, International Journal of Engineering and Science 22(4), 1984, 451–458.

    MATH  Google Scholar 

  35. Finikov, S. P., Method Cartan's Exterior Forms, Gostechizdat, Moscow-Leningrad, 1948.

    Google Scholar 

  36. Kuranishi, M., Lectures on Involutive Systems of Partial Differential Equations, Sao Paulo, Brazil, 1967.

  37. Hearn, A. C. REDUCE Users Manual, ver. 3.3. The Rand Corporation CP 78. Santa Monica, California, 1987.

  38. Goursat, E. Course of Mathematical Analysis. ONTI, Moscow-Leningrad, 1933.

    Google Scholar 

  39. Galin, L. A., ‘Elastic-plastic torsion of prismatic bars’, Journal of Applied Mathematics and Mechanics 13, 1949, 285–289.

    MATH  MathSciNet  Google Scholar 

  40. Annin, B. D., ‘One property of solution of the equation u xx u yy u 2 xy = 1’, Doklady of Academy of Science of the USSR 168(3), 1966, 499–501.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meleshko, S.V. A Particular Class of Partially Invariant Solutions of the Navier—Stokes Equations. Nonlinear Dynamics 36, 47–68 (2004). https://doi.org/10.1023/B:NODY.0000034646.18621.73

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NODY.0000034646.18621.73

Navigation