Journal of Nanoparticle Research

, Volume 6, Issue 2, pp 233–240 | Cite as

Preparation and characterization of PbS nanoparticles in AOT micellar medium



The preparation of PbS nanoparticle is important in material science. Due to its predominant ionic character and low optical band gap (0.41 eV), it shows quantum confinement effect up to a larger size domain compared to other well studied semiconductor materials, such as ZnS and CdS, having predominantly covalent character. In this report, we present a simpler method of preparation of nanosized PbS in micellar medium of the surfactant AOT and spectrophotometric, fluorimetric, light scattering and electron microscopic characterization of the dispersion.

PbS nanoparticles surfactant micellar media band gap quantum confinement colloids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balasubramanian R., B. Kim S.L. Tripp X. Wang, M. Lieberman & A. Wei, 2002. Langmuir 18, 3676–3681.CrossRefGoogle Scholar
  2. Bhattacharjee B., D. Ganguly K. Iakoubovskii A. Stesmans & S. Chaudhury, 2002. Bull. Mater. Sci. 25(3), 175–180.Google Scholar
  3. Borelli N.F. & D.W. Smith, 1994. J. Non-Cryst. Sol. 180, 25–31.CrossRefGoogle Scholar
  4. Chakraborty I., A.R. Das & S.P. Moulik, Commun. Colloid Polymer Sci.Google Scholar
  5. Chen S., L.A. Truax & J.M. Sommers, 2000. Chem. Mater. 12, 3864–3870.CrossRefGoogle Scholar
  6. Dutta P. & J.H. Fendler, 2002. J. Colloid Interface Sci. 247, 47–53.CrossRefGoogle Scholar
  7. Guerreiro P.T., S. Ten N.F. Borelli J. Butty G.E. Jabbour & Peyghambrian, 1997. Appl. Phys. Lett. 71(12), 1595–1597.CrossRefGoogle Scholar
  8. Jana N.R., Z.L. Wang T.K. Sau & T. Pal, 2000. Curr. Sci. 79(9), 1367–1370.Google Scholar
  9. Kane R.S., R.E. Cohen & R. Silbey, 1996. Chem. Mater. 8, 1919–1924.CrossRefGoogle Scholar
  10. Lifsitz E., M. Sirota & H. Portianu, 1999. J. Cryst. Growth. 196, 126–134.CrossRefGoogle Scholar
  11. Lipovskii A.A., E.V. Kolobkova V. Potrikov T. Kang, A. Plkhovets T. Krauss M. Thomas, J. S, lcox F. Wise, Q. Shen & S. Kycia, 1997. Appl. Phys. Lett. 71,3406–3408.CrossRefGoogle Scholar
  12. Lisiescki I., P. Andre A. Filankembo C. Petit J. Tanori, T. Gulik-Krzywicki B.W. Ninham & M.P. Pileni, 1999. J. Phys. Chem. B. 103, 9168–9175.CrossRefGoogle Scholar
  13. Moulik S.P., G.C. De A.K. Panda & A.R. Das, 1999. Langmuir 15, 8361–8367.CrossRefGoogle Scholar
  14. Murray C.B., D.J. Norris & M.G. Bawendi, 1993. J. Am. Chem. Soc. 115,8706–8715.CrossRefGoogle Scholar
  15. Nenadovic M.T., M.I. Comor V. Vasic & D.I. Micic, 1990. J. Phys. Chem. 94,6390–6396.CrossRefGoogle Scholar
  16. Panda A.K., B.B. Bhowmik A.R. Das & S.P. Moulik, 2001a. Langmuir 17, 1811–1817.CrossRefGoogle Scholar
  17. Panda A.K., S.P. Moulik B.B. Bhowmik & A.R. Das, 2001b. J. Colloid Interface Sci. 235,218–226.CrossRefPubMedGoogle Scholar
  18. Petit C., A. Taleb & M.P. Pileni, 1999. J. Phys. Chem. B 103, 1805–1810.CrossRefGoogle Scholar
  19. Pileni M.P. 1993. J. Phys. Chem. 97(27), 6961–6973.CrossRefGoogle Scholar
  20. Pinna N., K. Weiss H. Sack-Kongetil W. Vogel J. Urban & M.P. Pileni, 2000. Langmuir 17, 7982–7987.CrossRefGoogle Scholar
  21. Rollins H.W., T. Whiteside G.J. Shafer, J.-J. Ma, M.-H. Tu, J.-T. Liu D.D. DesMarteau & Y.-P. Sun, 2000. J. Mater. Chem. 10, 2081–2084.CrossRefGoogle Scholar
  22. Rosetti R., R. Hull J.M. Gibson & L.E. Brus, 1985. J. Chem. Phys. 83(3), 1406–1410.CrossRefGoogle Scholar
  23. Sankaran V., C.C. Cummins R.R. Schrock R.E. Cohen & R.J. Silbey, 1990. Am. Chem. Soc. 112,6858.CrossRefGoogle Scholar
  24. Shafi K.V.P.M. A. Gedanken & R. Prozoror, 1998. Adv. Mater. 10, 590–593.CrossRefGoogle Scholar
  25. Steigerwald M.L., A.P. Alivisatos J.M. Gibson T.D. Harris, R. Kortan A.J. Muller A.M. Thayer T.M. Duncan D.C. Douglass & L.E. Brus, 1988. J. Am. Chem. Soc. 110, 3046–3050.CrossRefGoogle Scholar
  26. Suslick K.S., M. Fang & T. Hyeon, 1996. J. Am. Chem. Soc. 118, 11960–11961.CrossRefGoogle Scholar
  27. Tassoni R. & R.R. Schrock, 1994. Chem. Mater. 6,744.CrossRefGoogle Scholar
  28. Tauc J. & A. Menth, 1972. J. Non-Cryst. Sol. 569,8–10.Google Scholar
  29. Thielsch R., T. Bohme R. Reiche D. Schlafer H.D. Bauer & H. Bottcher, 1988. Nanostruct. Mater. 10(2), 131–149.CrossRefGoogle Scholar
  30. Tian Y., C. Wu N. Kotov & J.H. Fendler, 1994. Adv. Mater. 6(12), 959–962.CrossRefGoogle Scholar
  31. Torimoto T., H. Uchida T. Sakata T. Mori & Yoneyama, 1993. J. Am. Chem. Soc. 115,1874–1880.CrossRefGoogle Scholar
  32. Wang Y., A. Suna W. Mahler & R. Kasowski, 1987. J. Chem. Phys. 87(12), 7315–7322.CrossRefGoogle Scholar
  33. Wei A., S. Kim S.V. Pusztay S.L. Tripp & R. Balasubramanian, 2001. J. Inclusion Phenomen. Macrocycl. Chem. 41,83–86.CrossRefGoogle Scholar
  34. Wei A., K.V. Stavens S.V. Pusztay & R.P. Andres, 1999. Mater. Res. Soc. Symp. Proc. Ser. 581,59.Google Scholar
  35. Wise F.W., 2000. Acc. Chem. Res. 33,773–780.CrossRefPubMedGoogle Scholar
  36. Yang J.P., S.B. Qadri & B.R. Ratna, 1996. J. Phys. Chem. 100, 17255–17259.CrossRefGoogle Scholar
  37. Yang J. & J.H. Fendler, 1995. J. Phys. Chem. 99,5505–5511.CrossRefGoogle Scholar
  38. Zhao S.K., L.D. McCormic & J.H. Fendler, 1992. Adv. Mater. 4(2), 93–97.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of Chemistry, Centre for Surface ScienceJadavpur UniversityKolkataIndia

Personalised recommendations