Skip to main content
Log in

New Site-Specific Endonucleases F-TflI, F-TflII, and F-TflIV Encoded by Bacteriophage T5

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Site-specific endonucleases F-TflI, F-TflII, and F-TflIV have been revealed, which belong to the H-N-H family and are encoded by ORFs located in the tRNA gene region of bacteriophage T5. It has been shown that endonuclease F-TflIV introduces a double-strand break in a 17-bp pseudopalindromic DNA sequence to yield 1-nt 3′-protruding ends. Unlike F-TflIV, F-TflI, and F-TflII introduce single-strand breaks in asymmetrical, highly degenerate sequences, each cleaving only one (template or coding) strand. Amino acid sequence analysis has revealed a high homology of the enzymes in the region of the H-N-H motif and in the putative C-terminal catalytic domain. The N-terminal region of F-TflIV proved to be homologous to the HTH domain of LuxR-related transcriptional regulators, which is responsible for DNA recognition and binding. The N-terminal regions of F-TflI and F-TflII contain a composite motif NUMOD4, which is characteristic of a putative recognition domain of some H-N-H endonucleases. A two-domain structure, with the N-terminal recognition and C-terminal catalytic domains, and evolutionary origin via recombination of the catalytic and recognition domain-coding regions are proposed for F-TflI, F-TflII, and F-TflIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Belfort M., Roberts R.J. 1997. Homing endonucleases: Keeping the house in order. Nucleic Acids Res. 25, 3379-3388.

    Google Scholar 

  2. Jurica M.S., Stoddard B.L. 1999. Homing endonucleases: Structure, function and evolution. Cell. Mol.Life Sci. 55, 1304–1326.

    Google Scholar 

  3. Chevalier B.S., Stoddard B.L. 2001. Homing endonucleases: Structural and functional insight into the catalysts of intron / intein mobility. Nucleic Acids Res. 29,3757–3774.

    Google Scholar 

  4. Kadyrov F.A., Shlyapnikov M.G., Kryukov V.M. 1997. A phage T4 site-specific endonuclease, SegE, is responsible for a non-reciprocal genetic exchange between T-even-related phages. FEBS Lett. 415, 75–80.

    Google Scholar 

  5. Liu Q., Belle A., Shub D.A., Belfort M., Edgell D.R. 2003. SegG endonuclease promotes marker exclusion and mediates co-conversion from a distant cleavage site.J. Mol. Biol. 334, 13–23.

    Google Scholar 

  6. Belle A., Landthaler M., Shub D.A. 2002. Intronless homing: Site-specific endonuclease SegF of bacteriophage T4 mediates localized marker exclusion analogous to homing endonucleases of group I introns. Genes Dev. 16, 351–362.

    Google Scholar 

  7. Gorbalenya A.E. 1994. Self-splicing group I and group II introns encode homologous (putative) DNA endonucleases of a new family. Protein Sci. 3, 1117–1120.

    Google Scholar 

  8. Shub D.A., Goodrich-Blair H., Eddy S.R. 1994. Amino acid sequence motif of group I intron endonucleases is conserved in open reading frames of group II introns.Trends Biochem. Sci. 19, 402–404.

    Google Scholar 

  9. Eddy S.R., Gold L. 1991. The phage T4 nrdB intron: A deletion mutant of a version found in the wild. Genes Dev. 5, 1032–1041.

    Google Scholar 

  10. Landthaler M., Begley U., Lau N.C., Shub D.A. 2002.Two self-splicing group I introns in the ribonucleotide reductase large subunit gene of Staphylococcus aureus phage Twort. Nucleic Acids Res. 30, 1935–1943.

    Google Scholar 

  11. Goodrich-Blair H., Shub D.A. 1996. Beyond homing: Competition between intron endonucleases confers a selective advantage on flanking genetic markers. Cell. 84, 211–221.

    Google Scholar 

  12. Landthaler M., Shub D.A. 2003. The nicking homing endonuclease I-BasI is encoded by a group I intron in the DNA polymerase gene of the Bacillus thuringiensis phage Bastille. Nucleic Acids Res. 31, 3071–3077.

    Google Scholar 

  13. Martisnez-Abarca F., Toro N. 2000. Group II introns in the bacterial world. Mol. Microbiol. 38, 917–926.

    Google Scholar 

  14. Curcio M.J., Belfort M. 1996. Retrohoming: cDNAmediated mobility of group II introns requires a catalytic RNA. Cell. 84, 9–12.

    Google Scholar 

  15. Zimmerly S., Guo H., Perlman P.S., Lambowitz A.M. 1995. Group II intron mobility occurs by target DNAprimed reverse transcription. Cell. 82, 545–554.

    Google Scholar 

  16. Zimmerly S., Guo H., Eskes R., Yang J., Perlman P.S., Lambowitz A.M. 1995.A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell. 83, 529–538.

    Google Scholar 

  17. Matsuura M., Saldanha R., Ma H., Wank H., Yang J., Mohr G., Cavanagh S., Dunny G.M., Belfort M., Lambowitz A.M. 1997. A bacterial group II intron encoding reverse transcriptase, maturase and DNA endonuclease activities: Biochemical demonstration of maturase activity and insertion of new genetic information within the intron. Genes Dev. 11, 2910–2924.

    Google Scholar 

  18. Malik H.S., Henikoff S. 2000. Dual recognition-incision enzymes might be involved in mismatch repair and meiosis.Trends Biochem. Sci. 25, 414–418.

    Google Scholar 

  19. Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Google Scholar 

  20. Thompson J.D., Higgins D.G., Gibson T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Google Scholar 

  21. Mulder N.J., Apweiler R., Attwood T.K., et al. 2003. The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res. 31, 315–318.

    Google Scholar 

  22. Jones D.T. 1999. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol.292, 195–202.

    Google Scholar 

  23. Pokrovskaya I.D., Gurevich V.V. 1994. In vitro transcription: Preparative RNA yields in analytical scale reactions.Anal. Biochem. 220, 420–423.

    Google Scholar 

  24. Erickson A.H., Blobel G. 1983. Cell-free translation of messenger RNA in a wheat germ system. Methods Enzymol.96, 38–50.

    Google Scholar 

  25. Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature.227,680–685.

    Google Scholar 

  26. Zhlyapnikov M.G., Ksenzenko V.N. 1994. Specific structural features of tRNAs encoded by T5 bacteriophage.Mol. Biol. 28, 1321–1329.

    Google Scholar 

  27. Walker D.C., Georgiou T., Pommer A.J., Walker, D., Moore G.R., Kleanthous C., James R. 2002.Mutagenic scan of the H-N-H motif of colicin E9: Implications for the mechanistic enzymology of colicins, homing enzymes and apoptotic endonucleases. Nucleic Acids Res.30,3225–3234.

    Google Scholar 

  28. Stibon E., Pietrokovski S. 2003. New types of conserved sequence domains in DNA-binding regions of homing endonucleases. Trends Biochem. Sci.28, 473–477.

    Google Scholar 

  29. Baikalov I., Schröder I., Kaczor-Grzeskowiak M., Cascio D., Gunsalus R.P., Dickerson R.E. 1998. NarL Dimerization? Suggestive evidence from new crystal form. Biochemistry.37, 3665–3676.

    Google Scholar 

  30. Spirin A.S. 2002. Cell-free protein synthesis. In: Cellfree translation systems. Ed. Spirin A.S. Berlin; Heidelberg; N.Y.: Springer-Verlag, pp. 3–20.

    Google Scholar 

  31. Mueller J.E., Smith D., Bryk M., Belfort M. 1995.Intron-encoded endonuclease I-TevI binds as a monomer to effect sequential cleavage via conformational changes in the td homing site. EMBO J. 14, 5724–5735.

    Google Scholar 

  32. Kohn W.D., Mant C.T., Hodges R.S. 1997. α-helical protein assembly motifs.J. Biol. Chem. 272, 2583–2586.

    Google Scholar 

  33. Holliday R.1964. A mechanism for gene conversion in fungi. Genet. Res. 5, 282–304.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akulenko, N.V., Ivashina, T.V., Shaloiko, L.A. et al. New Site-Specific Endonucleases F-TflI, F-TflII, and F-TflIV Encoded by Bacteriophage T5. Molecular Biology 38, 530–537 (2004). https://doi.org/10.1023/B:MBIL.0000037005.52556.0f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MBIL.0000037005.52556.0f

Navigation