Law and Human Behavior

, Volume 28, Issue 3, pp 253–271 | Cite as

Identifying Three Types of Violent Offenders and Predicting Violent Recidivism While on Probation: A Classification Tree Analysis

  • Loretta J. Stalans
  • Paul R. Yarnold
  • Magnus Seng
  • David E. Olson
  • Michelle Repp
Article

Abstract

This study employs classification tree analysis (CTA) to address whether 3 groups of violent offenders have similar or different risk factors for violent recidivism while on probation. A sample of 1,344 violent offenders on probation was classified as generalized aggressors (N = 302), family only aggressors (N = 321), or nonfamily only aggressors (N = 717). The strongest predictor of violent recidivism while on probation was whether the offender was a generalized aggressor or not, with generalized aggressors more likely to be arrested for new violent crimes. Prior arrests for violent crimes predicted violent recidivism of generalized aggressors, but did not significantly predict violent recidivism of family only and nonfamily only aggressors. For generalized aggressors and family only batterers, treatment noncompliance was an important risk predictor of violent recidivism. CTA compared to logistic regression classified a higher percentage of cases into low-risk and high-risk groups, provided higher improvement in classification accuracy of violent recidivists beyond chance performance, and provided a better balance of false positives and false negatives. The implications for the risk assessment and domestic violence literature are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Adams, S., Olson, D., & Adkins, S. (2001). Initial analysis of the 2001 Illinois probation survey. Chicago, IL: Illinois Criminal Justice Information Authority.Google Scholar
  2. Alarid, L. F., Burton, V. S., & Cullen, F. T. (2000). Gender and crime among felony offenders: Assessing the generality of social control and differential association theories. Journal of Research in Crime and Delinquency, 37(2), 171–199.Google Scholar
  3. Aldarondo, E., & Sugarman, D. B. (1996). Risk marker analysis of the cessation and persistence of wife assault. Journal of Consulting and Clinical Psychology, 64, 1010–1019.Google Scholar
  4. Arozullah, A. M., Parada, J., Bennett, C. L., Deloria-Knoll, M., Chmiel, J. S., Phan, L. et al. (2003). A rapid staging system for predicting mortality from HIV-associated community-acquired pneumonia. Chest Google Scholar
  5. Arozullah, A. M., Yarnold, P. R., Weinstein, R. A., Nwadiaro, N., McIlraith, T. B., Chmiel, J. S. et al. (2000). A new preadmission staging system for predicting in-patient mortality from HIV-associated Pneumocystis carinii pneumonia in the early-HAART era. American Journal of Respiratory and Critical Care Medicine, 161, 1081–1086.Google Scholar
  6. Bennett, L., Goodman, L., & Dutton, M. A. (2000). Risk assessment among batterers arrested for domestic assault: The salience of psychological abuse. Violence Against Women, 6(11), 1190–1203.Google Scholar
  7. Bonta, J., Law, M., & Hanson, R. K. (1998). The prediction of criminal and violent recidivism among mentally disordered offenders: A meta-analysis. Psychological Bulletin, 123, 123–142.Google Scholar
  8. Douglas, K. S., & Webster, C. D. (1999). The HCR-20 Violence Risk Assessment Scheme: Concurrent validity in a sample of incarcerated offenders. Criminal Justice and Behavior, 26(1), 3–19.Google Scholar
  9. Dutton, D. G., & Kropp, P. R. (2000). A review of domestic violence risk instruments. Trauma, Violence, and Abuse, 1(2), 171–181.Google Scholar
  10. Efron, N., & Tinshirani, R.J. (1993). An introduction to the bootstrap. London: Chapman & Hall.Google Scholar
  11. Firestone, P., Bradford, J. M., McCoy, M., Greenberg, D. M., Curry, S., & Larose, M. R. (2000). Prediction of recidivism in extrafamilial child molesters based on court-related assessments. Sexual Abuse: A Journal of Research and Treatment, 12(3), 203–221.Google Scholar
  12. Firestone, P., Bradford, J. M., McCoy, M., Greenberg, D. M., Larose, M. R., & Curry, S. (1999). Prediction of recidivism in incest offenders. Journal of Interpersonal Violence, 14(5), 511–531.Google Scholar
  13. Gendreau, P., Little, T., & Goggin, C. (1996). A meta-analysis of the predictors of adult offender recidivism: What works! Criminology, 34, 575–607.Google Scholar
  14. Goodman, L. A., Dutton, M. A., & Bennett, L. (2000). Predicting repeat abuse among arrested batterers: Use of the danger assessment scale in the criminal justice system. Journal of Interpersonal Violence, 15(1), 63–74.Google Scholar
  15. Grann, M., Belfrage, H., & Tengstrom, A. (2000). Actuarial assessment of risk for violence: Predictive validity of the VRAG and the historical part of the HCR-20. Criminal Justice and Behavior, 27, 97–114.Google Scholar
  16. Greenfeld, L. A. (1996). Child victimizers: Violent offenders and their victims (NJ-153258). Washington, DC: U.S. Department of Justice, Bureau of Justice Statistics.Google Scholar
  17. Hanson, R. K., & Bussiere, M. T. (1998). Predicting relapse: A meta-analysis of sexual offender recidivism studies. Journal of Consulting and Clinical Psychology, 66, 348–362.Google Scholar
  18. Hanson, R. K., & Harris, A. J. R. (2000). Where should we intervene? Dynamic predictors of sexual offense recidivism. Criminal Justice and Behavior, 27(1), 6–35.Google Scholar
  19. Hanson, R. K., & Harris, A. J. R. (2001). A structured approach to evaluating change among sex offenders. Sexual Abuse: A Journal of Research and Treatment, 13(2), 105–123.Google Scholar
  20. Hart, S. D., & Hare, R. D., (1997). Psychopathy: Assessment and association with criminal conduct. In D. M. Stoff, J. Breiling, & J. D. Maser (Eds.), Handbook of antisocial behavior (pp. 22–35). New York: Wiley.Google Scholar
  21. Hilton, N. Z., Harris, G. T., & Rice, M. E. (2001). Predicting violence by serious wife assaulters. Journal of Interpersonal Violence, 16(5), 408–423.Google Scholar
  22. Holtzworth-Munroe, A., & Stuart, G. L. (1994). Typologies of male batterers: Three subtypes and the differences among them. Psychological Bulletin, 116, 476–497.Google Scholar
  23. Klassen, D., & O'Connor, W. A. (1994). Demographic and case history variables in risk assessment. In J. Monahan & H. J. Steadman (Eds.), Violence and mental disorder (pp. 229–257). Chicago: University of Chicago Press.Google Scholar
  24. Kropp, P. R., & Hart, S. D. (1997). Assessing risk of violence in wife assaulters: The Spousal Assault Risk Assessment Guide. In C. D. Webster & M. A. Jackson (Eds.), Impulsivity: Theory, assessment, and treatment (pp. 302–325). New York: Guilford.Google Scholar
  25. Kropp, P. R., & Hart, S. D. (2000). The spousal assault risk assessment (SARA) guide: Reliability and validity in adult male offenders. Law and Human Behavior, 24(1), 101–118.Google Scholar
  26. Laviolette, A. D., & Barnett, O. W. (2000). It could happen to anyone: Why battered women stay. Thousand Oaks, CA: Sage.Google Scholar
  27. Lyon, D. R., Hart, S. D., & Webster, C. D. (2001). Violence and risk assessment. In R. A. Schuller & J. R. P. Ogloff (Eds.), Introduction to psychology and law: Canadian perspectives (pp. 314–350). Buffalo, NY: University of Toronto Press.Google Scholar
  28. Monahan, J., Steadman, H. J., Appelbaum, P. S., Robbins, P. C., Mulvey, E. P., Silver, E. et al. (2000). Developing a clinically useful actuarial tool for assessing violence risk. British Journal of Psychiatry, 176, 312–319.Google Scholar
  29. Mueser, K. T., Yarnold, P. R., Rosenberg, S. D., Drake, R. E., Swett, C., Miles, K. M. et al. (2000). Substance use disorder in hospitalized severely mentally ill psychiatric patients: Prevalence, correlates, and subgroups. Schizophrenia Bulletin, 26, 179–193.Google Scholar
  30. Olson, D. E., & Stalans, L. J. (2001). Violent offenders on probation: Profile, sentence, outcome differences among domestic violence and other violent probationers. Violence Against Women, 7(10), 1164–1185.Google Scholar
  31. Quinsey, V. L., Harris, G. T., Rice, M. E., & Cormier, C. A. (1998). Violent offenders: Appraising and managing risk. Washington, DC: American Psychological Association.Google Scholar
  32. Rice, M. E. (1997). Violent offender research and implications for the criminal justice system. American Psychologist, 52(4), 414–423.Google Scholar
  33. Saunders, D. G. (1992). A typology of men who batterer: Three types derived from cluster analysis. American Journal of Orthopsychiatry, 62, 264–275.Google Scholar
  34. Saunders, D. G. (1993). Husbands who assault: Multiple profiles requiring multiple responses. In N. Z. Hilton (Ed.), Legal responses to wife assault: Current trends and evaluation (pp. 9–34). Newbury Park, CA: Sage.Google Scholar
  35. Shepard, M. (1992). Predicting batterer recidivism five years after community intervention. Journal of Family Violence, 7(3), 167–178.Google Scholar
  36. Silver, E., & Chow-Martin, L. (2002). A multiple models approach to assessing recidivism risk: Implications for judicial decisionmaking. Criminal Justice and Behavior, 29(5), 538–568.Google Scholar
  37. Silver, E., Smith, W. R., & Banks, S. (2000). Constructing actuarial devices for predicting recidivism: A comparison of methods. Criminal Justice and Behavior, 27(6), 733–764.Google Scholar
  38. Soltysik, R. C., & Yarnold, P. R. (1993). ODA 1.0. Optimal data analysis for DOS. Chicago, IL: Optimal Data Analysis.Google Scholar
  39. Soltysik, R. C., & Yarnold, P. R. (1994). Univariable optimal discriminant analysis: One-tailed hypotheses. Educational and Psychological Measurement, 4, 646–653.Google Scholar
  40. Steadman, H. J., Silver, E., Monahan, J., Appelbaum, P. S., Robbins, P. C., Mulvey, E. P. et al. (2000). A classification tree approach to the development of acturial violence risk assessment tools. Law and Human Behavior, 24(1), 83–100.Google Scholar
  41. Swanson, J. W. (1994). Mental disorder, substance abuse, and community violence: An epidemiological approach. In J. Monahan & H. J. Steadman (Eds.), Violence and mental disorder (pp. 101–136). Chicago: University of Chicago Press.Google Scholar
  42. Tweed, R. G., & Dutton, D. G. (1998). A comparison of impulsive and instrumental subgroups of batterers. Violence and Victims, 13, 217–230.Google Scholar
  43. Yarnold, P. R. (1996). Discriminating geriatric and nongeriatric patients using functional status information: An example of classification tree analysis via UniODA. Educational and Psychological Measurement, 56(4), 656–667.Google Scholar
  44. Yarnold, P. R., & Soltysik, R. C. (1991). Theoretical distributions of optimal for univariate discrimination of random data. Decision Sciences, 22, 739–752.Google Scholar
  45. Yarnold, P. R., & Soltysik, R. C. (2004). Optimal data analysis: A guidebook with software for windows.. Washington, DC: American Psychological Association Press.Google Scholar
  46. Yarnold, P. R., Soltysik, R. C., & Bennett, C. L. (1997). Predicting in-hospital mortality of patients with aids-related pneumocystis carinii pneumonia: An example of hierarchically optimal classification tree analysis. Statistics in Medicine, 16, 1451–1463.Google Scholar

Copyright information

© American Psychology-Law Society/Division 41 of the American Psychology Association 2004

Authors and Affiliations

  • Loretta J. Stalans
    • 1
  • Paul R. Yarnold
    • 2
  • Magnus Seng
    • 1
  • David E. Olson
    • 1
  • Michelle Repp
    • 3
  1. 1.Loyola University ChicagoChicago
  2. 2.Northwestern University Medical SchoolChicago
  3. 3.Illinois Criminal Justice Information AuthorityChicago

Personalised recommendations