Skip to main content
Log in

Linear Chain Termination in the Kinetics of Postpolymerization of Dimethacrylates

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The kinetics of postpolymerization (after turning off UV irradiation) of various dimethacrylates differing in their nature and molecular weight was studied over a wide range of temperatures. For each temperature, a series of kinetic curves, varying in the initial conversion during a dark period, was obtained. The proposed kinetic model is based on the following assumptions. The process in the interphase layer at the liquid monomer-solid polymer boundary has the most significant contribution to the kinetics of postpolymerization. Chain termination in the interphase layer occurs by the unimolecular reaction, is controlled by the chain growth rate, and presents the act of “self-burying” of an active radical in a conformational trap. A wide spectrum of characteristic times is inherent in unimolecular chain termination, and the relaxation function is described by the Kohlraush' stretched exponential law. The rate law obtained agrees well with experimental data. This fact made it possible to estimate the rate constants (k t) and the activation energies of chain termination and to establish the scale dependence of k t on the molar concentration [M0] of the monomer in a block. It is suggested that both the stretched exponential law and the scale k t-[M0] dependence are due to a wide spectrum of characteristic times of relaxation exhibiting the properties of a fractal set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Garina, E.S., Kuznetsova, T.M., Zubov, V.P., and Kabanov, V.A., Dokl. Akad. Nauk SSSR, 1973, vol. 209, no. 2, p. 380.

    Google Scholar 

  2. Shen, J., Tian, Y., and Wong, G., Sci. China., 1990, vol. 33, no. 9, p. 1046.

    Google Scholar 

  3. D'yachkov, A.N., Efimov, A.L., Efimov, L.I., et al., Vysokomol. Soedin., Ser. A, 1983.

    Google Scholar 

  4. Zhu, S., Tian, Y., and Mamieles, A.E., Macromolecules, 1990, vol. 23, p. 1144.

  5. Andrzejevska, E., Bogacki, M.B., and Andrzejevski, M., Macromol. Theory Simul., 2001, vol. 10, p. 842.

    Google Scholar 

  6. Medvedevskikh, Ju.G., Zagladko, E.A., Turovski, A.A., and Zaikov, G.E., Int. J. Pol. Mater., 1999, vol. 43, p. 157.

    Google Scholar 

  7. Zagladko, E.A., Medvedevskikh, Ju.G., Turovski, A.A., and Zaikov, G.E., Int. J. Pol. Mater., 1998, vol. 39, p. 227.

    Google Scholar 

  8. Medvedevskikh, Ju.G., Zagladko, E.A., Turovski, A.A., and Zaikov, G.E., Rus. Polym. News, 1999, vol. 4, no. 3, p. 33.

    Google Scholar 

  9. Efimov, A.L., Bugrova, T.A., and D'yachkov, A.I., Vysokomol. Soedin., Ser. B, 1992, vol. 25, no. 11, p. 2176.

    Google Scholar 

  10. Kurdikar, D.L. and Peppas, N.A., Macromolecules, 1981, vol. 27, p. 4084.

    Google Scholar 

  11. Ivanov, V.B., Romanyuk, A.P., and Shibanov, V.V., Vysokomol. Soedin., Ser. B, 1993, vol. 35, no. 2, p. 119.

    Google Scholar 

  12. Min'ko, S.S., Luzinov, I.A., and Smirnov, B.R., Vysokomol. Soedin., Ser. B, 1990, vol. 32, no. 10, p. 750.

    Google Scholar 

  13. Min'ko, S.S., Sidorenko, A.A., and Voronov, S.A., Vysokomol. Soedin., Ser. B, 1995, vol. 37, no. 8, p. 1403.

    Google Scholar 

  14. Ivanchev, S.S., Dmitrenko, A.V., and Krupnik, A.M., Vysokomol. Soedin., Ser. A, 1998, vol. 30, no. 9, p. 1951.

    Google Scholar 

  15. Stepanyan, A.O., Zaremskii, M.Yu., and Olenin, A.V., Dokl. Akad. Nauk SSSR, 1984, vol. 274, no. 3, p. 655.

    Google Scholar 

  16. Medvedevskikh, Yu.G., Zaglad'ko, E.A., Bratus', A.N., and Turovskii, A.A., Dop. Nat. Akad. Nauk Ukr., 2000, no. 10, p. 148.

  17. Montroll, E.W. and Bendler, J.T., J. Stat. Phys., 1984, vol. 34, p. 129.

    Google Scholar 

  18. Williams, G. and Watts, D.C., J. Chem. Soc., Trans. Faraday Soc., 1970, vol. 66, p. 80.

    Google Scholar 

  19. Shlezinger, M. and Klafter, J., Fractals in Physics, Pietronero, L. and Tosatti, E., Eds., Amsterdam: Elsevier, 1985.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medvedevskikh, Y.G., Kitsya, A.P., Bazylyak, L.I. et al. Linear Chain Termination in the Kinetics of Postpolymerization of Dimethacrylates. Kinetics and Catalysis 45, 497–503 (2004). https://doi.org/10.1023/B:KICA.0000038076.61928.d5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:KICA.0000038076.61928.d5

Keywords

Navigation