Skip to main content
Log in

Reactions of Adsorbed CH3 Radicals and the Products of Their Decomposition at Mo and Cu Surfaces According to Spatially Resolved TPR Data

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Reactions in the layer of CH3 radicals adsorbed on the surfaces of polycrystalline molybdenum and copper were studied using the method of temperature-programmed reaction (TPR). After N2 and CH3 · adsorption (the products of azomethane pyrolysis) on molybdenum, N2, H2, and CH4 were observed in comparable amounts in the TPR spectrum. At the same time, only methane was detected in the TPR products on the copper surface. The spatial distributions of CH4 desorption flows were measured, which were indicative of translational excitation of these molecules. The direct measurements of the rates of the CH4 molecules desorbed from the copper surface showed that their translational energy was 10–15 times greater than the thermal one. The mechanisms of reactions on the Mo and Cu surfaces are proposed. The rate constants were calculated for some of the elementary steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Driscoll, D.J., Campbell, K.D., and Lunsford, J.H., Adv. Catal., 1987, vol. 35, p. 139.

    Google Scholar 

  2. Garibyan T.A., Margolis L.Ya., Catal. Rev. — Sci. Eng., 1989–1990, vol. 31, p. 35.

    Google Scholar 

  3. Sinev, M.Yu., Margolis, L.Ya., and Korchak, V.N., Usp. Khim., 1995, vol. 64,no. 4, p. 373.

    Google Scholar 

  4. Nersessyan, L.A., Vardanyan, I.A., Kegeyan, E.M., Margolis, L.Ya., and Nalbandyan, A.B., Dokl. Akad. Nauk SSSR, 1975, vol. 220,no. 3, p. 605.

    Google Scholar 

  5. Driscoll, D.J., Martir, W., Wang, J.-X., and Lunsford, J.H., J. Am. Chem. Soc., 1985, vol. 107,no. 6, p. 5062.

    Google Scholar 

  6. Fairbrother, D.H., Peng, X.-D., Stair, P.C., et al., Symp. on Methane and Alkane Conversion Chemistry, 207th National ACS Meeting, San Diego: Am. Chem. Soc., 1994, p. 280.

    Google Scholar 

  7. Hall, R.B., Castro, M., Kim, C.-M., et al., Symp. on Methane and Alkane Conversion Chemistry, 207th National ACS Meeting, San Diego: Am. Chem. Soc., 1994, p. 282.

    Google Scholar 

  8. Yang, Q.Y. and Ceyer, S.T., J. Vac. Sci. Technol. A, 1988, vol. 6,no. 3, p. 851.

    Google Scholar 

  9. Kislyuk, M.U., Tret'yakov, I.I., Savkin, V.V., and Sinev, M.Yu., Kinet. Katal., 2000, vol. 41,no. 1, p. 71.

    Google Scholar 

  10. Smudde, G.H., Jr., Min, Yu., and Stair, P.C., J. Am. Chem. Soc., 1993, vol. 115,no. 3, p. 1988.

    Google Scholar 

  11. Kislyuk, M.U. and Tret'yakov, I.I., Kinet. Katal., 1972, vol. 18,no. 3, p. 657.

    Google Scholar 

  12. Kislyuk, M.U., Savkin, V.V., and Tret'yakov, I.I., Kinet. Katal., 2001, vol. 42,no. 4, p. 594.

    Google Scholar 

  13. Kislyuk, M.U., Sklyarov, A.V., and Dangyan, T.M., Izv. Akad. Nauk SSSR, Ser. Khim., 1975, no. 10, p. 2161.

    Google Scholar 

  14. Cerny, S., Ponec, V., and Hladek, L., J. Catal., 1966, vol. 5,no. 1, p. 27.

    Google Scholar 

  15. Mahning, M. and Schmidt, L.D., Z. Phys. Chem., 1971, vol. 75, p. 227.

    Google Scholar 

  16. Lapyonlade, J. and Neil, K.S., C. R. Acad. Sci., Ser. C, 1972, vol. 274,no. 3, p. 2125.

    Google Scholar 

  17. Ko, S.M. and Schmidt, L.D., Surf. Sci., 1974, vol. 42,no. 3, p. 508.

    Google Scholar 

  18. Kratkii spravochnik fiziko-khimicheskikh velichin (Concise Handbook of Physicochemical Quantities), Mishchenko, K.P. and Ravdel', A.A., Eds., Leningrad: Khimiya, 1972, p. 172.

    Google Scholar 

  19. Ehrlich, G., J. Chem. Phys., 1959, vol. 31,no. 4, p. 1111.

    Google Scholar 

  20. Cotton, F. and Wilkinson, J., Advanced Inorganic Chemistry: A Comprehensive Text, New York: Wiley, 1965, vol. 2, p. 130.

    Google Scholar 

  21. Dushman, S., Scientific Foundations of Vacuum Technique, Lafferty, J.M., Ed., New York: Willey, 1962, p. 715.

    Google Scholar 

  22. Van Willigen, W., Phys. Lett. A, 1968, vol. 28,no. 2, p. 80.

    Google Scholar 

  23. Dabiri, A.E., Lee, T.J., and Stickney, R.E., Surf. Sci., 1971, vol. 26,no. 2, p. 522.

    Google Scholar 

  24. Kislyuk, M.U., Kinet. Katal., 2002, vol. 43,no. 5, p. 645.

    Google Scholar 

  25. Savkin, V.V. and Kislyuk, M.U., Kinet. Katal., 1996, vol. 37,no. 4, p. 591.

    Google Scholar 

  26. Savkin, V.V. and Kislyuk, M.U., Kinet. Katal., 1997, vol. 38,no. 5, p. 793.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kislyuk, M.U., Savkin, V.V. Reactions of Adsorbed CH3 Radicals and the Products of Their Decomposition at Mo and Cu Surfaces According to Spatially Resolved TPR Data. Kinetics and Catalysis 45, 122–132 (2004). https://doi.org/10.1023/B:KICA.0000016112.23528.d0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:KICA.0000016112.23528.d0

Keywords

Navigation