Skip to main content
Log in

The Mechanism of Selective NO x Reduction by Hydrocarbons in Excess Oxygen on Oxide Catalysts: I. Adsorption Properties of the Commercial NTK-10-1 Catalyst

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

According to X-ray phase and spectral analyses, the NTK-10-1 catalyst is a mixture of ZnO, CuO, NiO, ZnAl2O4, CuAl2O4, and CaCO3. Under conditions of selective reduction of nitrogen oxides by propane, nitrite and nitrate complexes are formed on the surface of the NTK-10-1 catalyst. With an increase in temperature, nitrite complexes transform to nitrate complexes at a rate that decreases in the presence of propane in the gas phase. Propane adsorption is an activated process in which oxygen plays an important role. The results of temperature-programmed reduction showed that oxygen readily desorbs from the catalyst surface even under oxidative conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Iwamoto, M., Yahiro, H., Yu-u, Y., Shundo, S., and Mizuno, N., Shokubai, 1990, 32, p. 430.

    Google Scholar 

  2. Held, W., Kogin, A., Richter, T., and Puppe, L., Catalytic NOx Reduction in Net Oxidizing Exhaust Gas, SAE Technical Paper Series 900496, 1990, p. 13.

  3. Matyshak, V.A., Il'ichev, A.N., Ukharsky, A.A., and Korchak, V.N., J. Catal., 1997, vol. 171, p. 245.

    Google Scholar 

  4. Gopalakrishnan, R., Stafford, P.R., Davidson, J.E., Hecker, C.W., and Bartolomew, C.H., Appl. Catal., B, 1993, vol. 2, no.1, p. 165.

    Google Scholar 

  5. Kharas, K.C.C., Appl. Catal., B, 1993, vol. 2, no.1, p. 207.

    Google Scholar 

  6. Shapiro, E.S., Joyner, W.R., Grunert, W., Hayes, N.W., Siddiqui, M.R.H., and Baeva, G.N., Stud. Surf. Sci. Catal., 1994, vol. 84, p. 1483.

    Google Scholar 

  7. Larsen, S.C., Aylor, A., Bell, A.T., and Reimer, J.A., J. Phys. Chem., 1994, vol. 98, no.44, p. 1153.

    Google Scholar 

  8. Genti, G. and Perathoner, S., Appl. Catal., A, 1995, vol. 132, p. 179.

    Google Scholar 

  9. Ivamoto, M., Catal. Today, 1996, vol. 29, p. 29.

    Google Scholar 

  10. Amiridis, M.D., Zhang, T., and Farrauto, R.J., Appl. Catal., B, 1996, vol. 10, p. 203.

    Google Scholar 

  11. Sadykov, V.A., Beloshapkin, S.A., Paukshtis, E.A., Alikina, G.M., Kochubei, D.I., Degtyarev, S.P., Bulgakov, N.N., Veniaminov, S.A., Netyaga, E.V., Bunina, E.V., Kharlanov, A.N., Lunina, E.V., Lunin, V.V., Matyshak, V.A., and Rozovskii, A.Ya., Polish J. Envir. Stud., 1997, vol. 6,suppl., p. 21.

    Google Scholar 

  12. Sirilumpen, M., Yang, R.T., and Tharapiwattananon, N., J. Mol. Catal. A: Chem., 1999, vol. 137, p. 273.

    Google Scholar 

  13. Shimizu, K., Kawabata, H., Maeshima, H., Satsuma, A., and Hattori, T., J. Phys. Chem., 2000, vol. 104, p. 2885.

    Google Scholar 

  14. Shimizu, K., Kawabata, H., Satsuma, A., and Hattori, T., J. Phys. Chem., 1999, vol. 103, p. 5240.

    Google Scholar 

  15. Chi, Y. and Chuang, S.S.C., J. Catal., 2000, vol. 190, p. 75.

    Google Scholar 

  16. Satsuma, A., Enjoji, T., Shimizu, K., Sato, K., Yoshida, H., and Hattori, T., J. Chem. Soc., 1998, vol. 94, no.2, p. 301.

    Google Scholar 

  17. Petunchi, J.O. and Hall, W.K., Appl. Catal., B, 1993, vol. 2, p. 17.

    Google Scholar 

  18. Yokoyama, C. and Misono, M., Catal. Today, 1994, vol. 22, p. 59.

    Google Scholar 

  19. Gerlach, T. and Baerns, M., Chem. Eng. Sci., 1999, vol. 54, p. 4379.

    Google Scholar 

  20. Otsuka, K., Takahashi, R., Amakawa, K., and Yamanaka, I., Catal. Today, 1998, vol. 45, p. 23.

    Google Scholar 

  21. Tret'yakov, V.F., Burdeinaya, T.N., Matyshak, V.A., Ukharskii, A.A., Mokrushin, O.S., and Glebov, L.S. Kinet. Katal., 2000, vol. 41, no.2, p. 261.

    Google Scholar 

  22. Burdeinaya, T.N., Matyshak, V.A., Tret'yakov, V.F., Mokrushin, O.S., and Glebov, L.S., Kinet. Katal., 2000, vol. 41, no.3, p. 415.

    Google Scholar 

  23. Yokoyama, C. and Misono, M., Catal. Lett., 1994, vol. 29, no.1, p. 1.

    Google Scholar 

  24. Bethke, K.A. and Kung, H.H., J. Catal., 1997, vol. 171, no.1, p. 1.

    Google Scholar 

  25. Yan, J.-C., Kung, H.H., Sachtler, W.M.H., and Kung, M.C., J. Catal., 1998, vol. 175, no.1, p. 294.

    Google Scholar 

  26. Burdeinaya, T.N., Davydova, M.N., Glebov, L.S., and Tret'yakov, V.F., Neftekhimiya, 1997, vol. 37, no.5, p. 427.

    Google Scholar 

  27. Burdeinaya, T.N., Davydova, M.N., Glebov, L.S., and Tret'yakov, V.F., Neftekhimiya, 1997, vol. 37, no.6, p. 504.

    Google Scholar 

  28. Cobb, J.B.C. and Bennett, A., J. Catal., 1996, vol. 164, no.2, p. 268.

    Google Scholar 

  29. Molina, R. and Poncelet, G., J. Catal., 1998, vol. 173, no.2, p. 257.

    Google Scholar 

  30. Davydov, A.A., IK-spektroskopiya v khimii poverkhnosti okislov (IR Spectroscopy Applied to the Chemistry of Oxide Surfaces), Novosibirsk: Nauka, 1984.

    Google Scholar 

  31. Nakanishi, K., Infrared Absorption Spectroscopy, Tokyo: Holden Day, 1962.

    Google Scholar 

  32. Tanaka, T., Okuhara, T., and Misono, M., Appl. Catal., B, 1994, vol. 4, p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tret'yakov, V.F., Matyshak, V.A., Burdeinaya, T.N. et al. The Mechanism of Selective NO x Reduction by Hydrocarbons in Excess Oxygen on Oxide Catalysts: I. Adsorption Properties of the Commercial NTK-10-1 Catalyst. Kinetics and Catalysis 44, 840–845 (2003). https://doi.org/10.1023/B:KICA.0000009063.08491.8f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:KICA.0000009063.08491.8f

Keywords

Navigation