Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 78, Issue 1, pp 191–205 | Cite as

Influence of two different fly ashes on the hydration of portland cements

  • V. Rahhal
  • R. Talero
Article

Abstract

Fly ashes from the combustion of coal thermal power stations are commonly incorporated into portland cements and/or concretes and mortars. The chemical and morphological composition of fly ashes, together with their particle size, make them suitable as pozzolanic(non-calcic) or pozzolanic/hydraulic(highly calcic) additions to manufacture such building materials. This work focuses on the incorporation of two different fly ashes (non-calcic but of very different Fe2O3(%) contents, fineness and morphology) to two ordinary portland cements (of very different mineralogical composition as well), to determine the effects those have and the interactions they produce in the hydration reactions of portland cement. The main techniques employed for this study have been: conduction calorimetry and Frattini test; secondary techniques applied have also been: determination of setting times and analysis by X-ray diffraction and SEM. Analysis of the results obtained permitted to find different effects of fly ash addition on the hydration reactions of portland cements. Thus, dilution and stimulation effects augment with the increased fly ash percentage. Delay and acceleration of the reactions depend mainly on the type of portland cement and are accentuated with increased fly ash contents. Their behaviour as concerns heat dissipation mainly, depends on the type of fly ash used and is more pronounced with increased cement replacement. On the other hand, the pozzolanic activity of these fly ashes has been revealed at 7 and 28 days, but not at 2 days. Finally, pozzolanic cements can be manufactured using different portland cements and/or types of fly ashes, in the appropriate proportions and compatible qualities, depending on the effect(s) one wish to enhance at a specific age, which is according to previous general conclusions drew out of sulphate attack and chloride attack researches.

XRD conduction calorimetry fly ashes portland cements pozzolanic cements pozzolanicity setting times 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ASTM C 618 Standard, Annual Book of ASTM Standards, Section 4 Construction, Vol. 4, p. 304.Google Scholar
  2. 2.
    EN 197-1 Standard, AENOR, Calle Génova, 6, 28004-Madrid, Spain.Google Scholar
  3. 3.
    P. K. Mehta, ACI SP 79-1, 1983, p. 1.Google Scholar
  4. 4.
    R. Talero, "Contribution to the Analytical and Physical-Chemistry Study of the System: Pozzolanic Cements-Gypsum-Water (at 2?±2°C)', PhD thesis. Facultad de Ciencias Químicas, Univ. Complutense de Madrid, Spain, 20 de noviembre de 1986.Google Scholar
  5. 5.
    MaP. Martín-Luengo, "Contribution to the Analysis and Study of the Behaviour in Sulfates and Mechanical Resistances of Some Crystalline Amorphous Components of Fly Ashes', PhD thesis. Facultad de Ciencias Químicas, Univ. Autónoma de Madrid, Spain, 12 de junio de 1997.Google Scholar
  6. 6.
    R. Mejía, "Contribution to the Analytical and Physical-Chemistry Study of the System: Portland cements-pozzolans and SBF-water (at 20±2°C)', PhD thesis, Facultad de Ciencias Químicas, Univ. Complutense de Madrid, Spain, 29 de mayo de 1997.Google Scholar
  7. 7.
    R. Talero, J. Mat. Civ. Eng., 2 (1990) 106.Google Scholar
  8. 8.
    R. Talero, 10th International Coal Ash Symposium. Proceedings,Vol. 2, Sec. 8, Concrete III, Orlando-Florida-USA, January 1993.Google Scholar
  9. 9.
    W. Roszczynialski, 9th International Congress on the Chemistry of Cement. Vol. 5, New Delhi 1992, p. 698.Google Scholar
  10. 10.
    Ma I. Sánchez de Rojas, Ma P. Luxan, M. Frías and M. Garcia, Cem. Conc. Res., 23 (1993) 46.CrossRefGoogle Scholar
  11. 11.
    Ch. L. Hwang and D. H. Shen, Cem. Concr. Res., 21 (1991) 410.CrossRefGoogle Scholar
  12. 12.
    M. Frías, Ma I. Sánchez de Rojas and J. Cabrera, Cem. Concr. Res., 30 (2000) 209.CrossRefGoogle Scholar
  13. 13.
    Ma I. Sánchez de Rojas and M. Frías, ACI SP 153-44, 1995, p. 829.Google Scholar
  14. 14.
    W. Nocuń-Wczelik, J. Therm. Anal. Cal., 65 (2001) 613.CrossRefGoogle Scholar
  15. 15.
    K. Asaga, H. Kuga, S. Takahashi, E. Sakai and M. Daimon, 10th International Congress on the Chemistry of Cement. 3, Goteborg 1997, p. 8.Google Scholar
  16. 15.
    L. Jiang, B. Lin and Y. Cai, ACI Materials Journal, 96 (1999) 703.Google Scholar
  17. 16.
    N. Bouzoubaâ, M. H. Zhang, V. M. Malhotra and D. M. Golden, ACI Materials Journal, 96 (1999) 641.Google Scholar
  18. 17.
    R. L. Shanma and S. P. Pandey, Cem. Concr. Res., 29 (1999) 1525.CrossRefGoogle Scholar
  19. 18.
    V. G. Papadakis, Cem. Concr. Res., 29 (1999) 1727.CrossRefGoogle Scholar
  20. 19.
    M. H. Shehata, D. A. Thomas and R. F. Bleszynski, Cem. Concr. Res., 29 (1999) 1915.CrossRefGoogle Scholar
  21. 20.
    W. Roszczynialski, J. Therm. Anal. Cal., 70 (2002) 387.CrossRefGoogle Scholar
  22. 21.
    Ma I. Sánchez de Rojas and M. Frías, Cem. Concr. Res., 26 (1996) 203.CrossRefGoogle Scholar
  23. 22.
    R. C. Sharma, M. K. Jain and S. N. Ghosh, Cem. Concr. Res., 23 (1993) 41.CrossRefGoogle Scholar
  24. 23.
    Pliego de Prescripciones Técnicas Generales para la Recepción de Cementos, RC-75. Decreto de la Presidencia de Gobierno 1964/1975 de 23 de mayo (B.O.E. nº 206 de 28 de agosto de 1975). Ministerio de Fomento, Spain.Google Scholar
  25. 24.
    Instrucción para la Recepción de Cementos, RC-97, Real Decreto 776/1997 de 30 de mayo. Ministerio de Fomento, Spain.Google Scholar
  26. 25.
    EN 196-5 Standard (=UNE 80-280-88 Standard), "Métodos de ensayo de cementos. Ensayo de puzolanicidad para cementos puzolánicos" (pozzolanicity test for pozzolanic cements), AENOR.Google Scholar
  27. 26.
    C. Evju, J. Therm. Anal. Cal., 71 (2003) 829.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publisher/Akadémiai Kiadó 2004

Authors and Affiliations

  • V. Rahhal
    • 1
  • R. Talero
    • 2
  1. 1.Departamento de Ingeniería Civil, Facultad de IngenieríaU.N.C.P.B.AOlavarríaArgentina E-mail
  2. 2.Instituto de Ciencias de la Construcción 'Eduardo Torroja'MadridSpain E-mail

Personalised recommendations