Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 78, Issue 1, pp 185–189 | Cite as

Thermal conductivity measurements using the flash method

  • P. S. Gaal
  • M.-A. Thermitus
  • Daniela E. Stroe
Article

Abstract

Thermal diffusivity is the speed with which heat propagates through a material. It has a multitude of direct applications, such as determining heat transfer through brake pads at the moment of contact, etc., but more often it is used to derive thermal conductivity from the fundamental relationship tying it with specific heat capacity and density. Using a new multi-sample configuration system, and testing a reference sample adjacent to the unknown, specific heat capacity can be obtained parallel with thermal diffusivity. Thus, a single test yields thermal diffusivity and thermal conductivity with prior knowledge of density. The method is fast and produces results with high accuracy and very good repeatability. The sample size, 12 to 30 mm diameter and 2 to 5 mm thickness, is easy to handle and is well suited for a broad range of materials, even for composites, often a problem for other methods. Typical data on two polymers, Pyrex glass and Pyroceram 9606 are presented.

thermal conductivity thermal diffusivity specific heat capacity flash technique Pyrex Pyroceram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. J. Parker, R. J. Jenkins, C. P. Butler and G. L. Abbott, J. Appl. Phys., 32 (1961) 1679.CrossRefGoogle Scholar
  2. 2.
    R. D. Cowan, J. Appl. Phys., 34 (1963) 926.CrossRefGoogle Scholar
  3. 3.
    K. Beedham and L. P. Dalrymple, Rev. Int. Hautes Temp. et Refract., 7 (1970) 278.Google Scholar
  4. 4.
    A. B. Donaldson, J. Appl. Phys., 43 (1972) 4226.CrossRefGoogle Scholar
  5. 5.
    L. M. Clark III and R. E. Taylor, J. Appl. Phys., 46 (1975) 714.CrossRefGoogle Scholar
  6. 6.
    J. A. Koski, in Proceedings of the Eighth Symposium on Thermophysical Properties, 2 (1981) 94.Google Scholar
  7. 7.
    Y. Takahashi, K. Yamamoto, T. Ohsato and T. Terai, in Proceedings of the 9th Japanese Symposium on Thermophysical Properties, (1988) p. 175.Google Scholar
  8. 8.
    P. S. Gaal, M. A. Therminus and S. P. Apostolescu, in Proceedings of Light Metals, TMS publisher, (2002) p. 541.Google Scholar
  9. 9.
    H. Wang, R. Dinwiddie and P. S. Gaal, in Thermal Conductivity 23, pp. 119-126, Technomic Publishing Co., Inc. (1996).Google Scholar
  10. 10.
    M. A. Thermitus and P. S. Gaal, in Thermal Conductivity 24 / Thermal Expansion 12, pp. 219-228, Technomic Publishing Co., Inc. (1999).Google Scholar
  11. 11.
    D. E. Stroe and A. Millea, presented at the 14th Symposium on Thermophysical Properties, pending publication (2000).Google Scholar
  12. 12.
    M. M. Suliyanti, T. Baba A. Ono, in The Thirteenth Japan Symposium on Thermophysical Properties, (1992) p. 125.Google Scholar

Copyright information

© Kluwer Academic Publisher/Akadémiai Kiadó 2004

Authors and Affiliations

  • P. S. Gaal
    • 1
  • M.-A. Thermitus
    • 1
  • Daniela E. Stroe
    • 1
  1. 1.Anter CorporationPittsburghUSA

Personalised recommendations