Advertisement

Synthesis, moisture resistance, thermal, chemical and SEM analysis of macro-defect-free (MDF) cements

  • S. C. Mojumdar
  • B. Chowdhury
  • K. G. Varshney
  • K. Mazanec
Article

Abstract

The results, presented here discusses the Macro-Defect-Free (MDF) cements prepared from the blends of sulfoaluminate ferrite belite (SAFB) clinkers, ordinary Portland cement (OPC), Al2O3 and poly(butyl acrylate) (PBA), styrene/acrylonitrile co-polymer (SACP) or sodium polyphosphate (poly-P). Though MDF cements have several attractive properties, their utilization has been limited due to the insufficient moisture resistance. It is a very challenging task for scientists and technologist to improve the moisture resistance of MDF cements. Therefore, the new MDF cements were subjected to various moist atmospheres to investigate their moisture resistance. The most significance of this work is the improvement of moisture resistance of the studied MDF cements. The aim of this work was to understand the effects of polymers, Al2O3, OPC and SAFB clinkers in the raw mix and delayed drying on MDF cements and also on their subsequent moisture resistance and thermal stability as well as to discover the new properties of these materials. Their chemical, thermal and scanning electron microscopic (SEM) analysis was also carried out before and after exposure to moisture. PBA was found to be the most suitable polymer for MDF cement synthesis, since the samples containing PBA showed the highest resistance to moisture. There are three main temperature regions on TG curves of both series of MDF cement samples. The significant differences in SEM of MDF cements before and after moisture attack and with different polymers were observed.

SEM MDF cements moisture resistance chemical polymers TG-DTA analysis 

References

  1. 1.
    M. Delucchi and G. Cerisola, Constr. Build. Mater., 15 (2001) 351.CrossRefGoogle Scholar
  2. 2.
    J. D Birchal, A. J. Howard, K. Kendal and J. H. Raistrick, 1988, June, Cementitious Composition and Cementitious Product of High Flexural Strength. European Pat. Specification, B1, No. 0055035, pp. 1-17.Google Scholar
  3. 3.
    J. A. Lewis and P. G. Desai, 1996, MAETA Workshop on High Flexural Polymer-Cement Composite, Sakata, 3–4 October, pp. 49-58.Google Scholar
  4. 4.
    K. Kendal, A. J. Howard and J. D. Birchal, Philos. Trans. R. Soc., A310 (1983) 139.Google Scholar
  5. 5.
    B. X. Li, W. Q. Liang and Z. He, J. Wuhan Univ. Technol., 16 (2001) 25.Google Scholar
  6. 6.
    M. Delucchii and G. Cerisola, Constr. Build. Mater., 15 (2001) 351.CrossRefGoogle Scholar
  7. 7.
    G. K. D. Pushpalal, J. Mat. Sci., 35 (2000) 981.CrossRefGoogle Scholar
  8. 8.
    B. X. Li, W. Q. Liang, W. S. Zhang and Z. He, J. Chin. Cer. Soc., 28 (2000) 325.Google Scholar
  9. 9.
    R. Alfani, P. Colombet, A. D'Amore, N. Rizzo and L. Nicolais, J. Mater. Sci., 34 (1999) 5683.CrossRefGoogle Scholar
  10. 10.
    C. Y. Rha, J. W. Seong, C. E. Kim, S. K. Lee and W. K. Kim, J. Mater. Sci., 34 (1999) 4653.CrossRefGoogle Scholar
  11. 11.
    C. K. Park, J. Cer. Soc. Jap., 106 (1998) 268.Google Scholar
  12. 12.
    J. A. Lewis and M. A. Boyer, Adv. Cem. Bas. Mater., 2 (1995) 2.Google Scholar
  13. 13.
    M. Tan, J. Lu and K. Wu, Cem. Concr. Res., 24 (1994) 1185.CrossRefGoogle Scholar
  14. 14.
    P. G. Desai, J. A. Lewis and D. P. Bentz, J. Mater. Sci., 29 (1994) 711.CrossRefGoogle Scholar
  15. 15.
    I. A. A. Ibrahim, H. H. ElSersy and M. F. Abadir, J. Therm. Anal. Cal., 76 (2004) 713.CrossRefGoogle Scholar
  16. 16.
    M. Drábik, L. Gáliková, K. G. Varshney and M. A. Quraishi, J. Therm. Anal. Cal., 76 (2004) 91.CrossRefGoogle Scholar
  17. 17.
    J. Dweck, P. F. Ferreira da Silva, R. Silva Aderne, P. M. Büchler and F. K. Cartledge, J. Therm. Anal. Cal., 71 (2003) 821.CrossRefGoogle Scholar
  18. 18.
    W. Roszczynialski, Wiesława Nocuń-Wczelik, J. Therm. Anal. Cal., 77 (2004) 151.CrossRefGoogle Scholar
  19. 19.
    J. Podìbradská, R. Černý, J. Drchalová, P. Rovnaníková and J. Šesták, J. Therm. Anal. Cal., 77 (2004) 85.CrossRefGoogle Scholar
  20. 20.
    D. S. Klimesch, M. Gutovic and A. Ray, J. Therm. Anal. Cal., 75 (2004) 197.CrossRefGoogle Scholar
  21. 21.
    Z. Pytel, J. Therm. Anal. Cal., 77 (2004) 159.CrossRefGoogle Scholar
  22. 22.
    Ewa T. Stepkowska, J. L. Pérez-Rodríguez, M. J. Sayagués and J. M. Martínez-Blanes, J. Therm. Anal. Cal., 73 (2003) 247.CrossRefGoogle Scholar
  23. 23.
    T. Grounds, D. V. Nowell and F. W. Wilburn, J. Therm. Anal. Cal., 72 (2003) 181.CrossRefGoogle Scholar
  24. 24.
    J. Sawków and Wiesława Nocuń-Wczelik, J. Therm. Anal. Cal., 74 (2003) 451.CrossRefGoogle Scholar
  25. 25.
    B. Pacewska, I. Wilińska, M. Bukowska, G. Blonkowski and Wiesława Nocuń-Wczelik, J. Therm. Anal. Cal., 77 (2004) 133.CrossRefGoogle Scholar
  26. 26.
    M. Bukowska, B. Pacewska and I. Wilińska, J. Therm. Anal. Cal., 74 (2003) 931.CrossRefGoogle Scholar
  27. 27.
    C. Evju, J. Therm. Anal. Cal., 71 (2003) 829.CrossRefGoogle Scholar
  28. 28.
    K. Rajczyk, E. Giergiczny and M. A. Glinicki, J. Therm. Anal. Cal., 77 (2004) 165.CrossRefGoogle Scholar
  29. 29.
    P. Y. Yan, F. Zheng and Z. Q. Xu, J. Therm. Anal. Cal., 74 (2003) 201.CrossRefGoogle Scholar
  30. 30.
    M. Palou and J. Majling, J. Therm. Anal. Cal., 71 (2003) 367.CrossRefGoogle Scholar
  31. 31.
    P. Myśliński, W. Precht, L. Kukiełka, P. Kamasa, K. Pietruszka and P. Małek, J. Therm. Anal. Cal., 77 (2004) 253.Google Scholar
  32. 32.
    J. Strnad, J. Protivínský, D. Mazur, K. Veltruská, Z. Strnad, A. Helebrant and J. Sesták, J. Therm. Anal. Cal., 76 (2004) 17.CrossRefGoogle Scholar
  33. 33.
    I. Janotka and L'. Krajči, 1999, Adv. Cem. Res., 11 (1999) 35.Google Scholar
  34. 34.
    J. Strigáč, M. T. Palou, J. Krištin and J. Majling, Ceramics–Silikaty, 44 (2000) 26.Google Scholar
  35. 35.
    L'. Krajči and A. Spacek, Geotechnika, 2 (2003) 10.Google Scholar
  36. 36.
    I. Janotka and L'. Krajči, Bul. Mater. Sci., 23 (2000) 521.CrossRefGoogle Scholar
  37. 37.
    S. C. Mojumdar, J. Therm. Anal. Cal., 64 (2001) 1133.CrossRefGoogle Scholar
  38. 38.
    M. Drábik, S. C. Mojumdar and L. Galikova, Cem. Concr. Res., 31 (2001) 751.Google Scholar
  39. 39.
    S. C. Mojumdar and M. Drabik, Science of cement and concrete-Kurdowski Symposium (Akapit Scientific Publisher, Poland 2001).Google Scholar
  40. 40.
    S. C. Mojumdar, A. Ray, M. Drábik, A. Cigan, F. Hanic and P. Capek, Solid State Phenomena, 90-91 (2003) 365.Google Scholar
  41. 41.
    M. Drábik, L. Galikova and S. C. Mojumdar, Key Engineering Materials, 206-213 (2002) 1867.CrossRefGoogle Scholar
  42. 42.
    S. C. Mojumdar, Thermophysics 2001, October 23-25, 2001, Raèková Dolina, High Tatras, Slovakia, pp. 93-98.Google Scholar
  43. 43.
    M. Drábik, S. C. Mojumdar and R. C. T. Slade, Ceramics–Silikaty, 46 (2002) 68.Google Scholar
  44. 44.
    S. C. Mojumdar, Challenges for Coord. Chemistry in the new century, 5 (2001) 453.Google Scholar
  45. 45.
    H. F. W. Taylor: Cement Chemistry, 2nd. (Thomas Telford Publ., London 1998).Google Scholar
  46. 46.
    C. A. Strydom and J. H. Potgieter, An investigation into the chemical nature of the reactivity of lime, Proc. 10th Int. Congr. Chem. Cement (Ed. H. Justnes, Sweden 1997).Google Scholar
  47. 47.
    I. Janotka, T. Nürnbergerová and L. Nad, Magaz. Concr. Res., 52 (2000) 399.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publisher/Akadémiai Kiadó 2004

Authors and Affiliations

  • S. C. Mojumdar
    • 1
  • B. Chowdhury
    • 2
  • K. G. Varshney
    • 1
  • K. Mazanec
    • 1
  1. 1.Institute for Research in ConstructionNational Research Council of Canada M-20Ottawa, ON, K1A 0R6Canada E-mail
  2. 2.Matech Associates 407 WLELake ArielUSA E-mail

Personalised recommendations