Journal of Thermal Analysis and Calorimetry

, Volume 78, Issue 1, pp 101–112 | Cite as

PE/Org-MMT nanocomposites

  • W. B. Xu
  • H. B. Zhai
  • H. Y. Guo
  • Z. F. Zhou
  • N. Whitely
  • W.-P. Pan


The non-isothermal crystallization kinetics of polyethylene (PE), PE/organic-montmorillonite (Org-MMT) composites were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the non-isothermal crystallization process of these samples very well. The difference in the exponent n between PE and PE/Org-MMT nanocomposites, indicated that non-isothermal kinetic crystallization corresponded to tridimensional growth with heterogeneous nucleation. The values of half-time, Zc and F(T) showed that the crystallization rate increased with the increasing of cooling rates for PE and PE/Org-MMT composites, but the crystallization rate of PE/Org-MMT composite was faster than that of PE at a given cooling rate. The method developed by Ozawa did not describe the non-isothermal crystallization process of PE very well. Moreover, the method proposed by Kissinger was used to evaluate the activation energy of the mentioned samples. The results showed that the activation energy of PE/Org-MMT was greatly larger than that of PE.

montmorillonite polyethylene nanocomposite non-isothermal crystallization kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. B. Messersmith and E. P. Giannelis, J. Polym. Sci. Part A: Polym. Chem., 33 (1995) 1047.CrossRefGoogle Scholar
  2. 2.
    A. Usuki, T. Kawasumi, M. Kojima, Y. Fukushima and A. Okada, J. Mater. Res., 8 (1993) 1179.Google Scholar
  3. 3.
    Y. Kojima, A. Usuki, M. Kawasumi, Y. Fukushima, A. Okada and T. Kurauchi, J. Mater. Res., 8 (1993) 1185.Google Scholar
  4. 4.
    K. Yano, A. Usuki, A. Okada, T. Kurauchi and O. Kamigato, J. Polym. Sci. Part A: Polym. Chem., 31 (1993) 2493.CrossRefGoogle Scholar
  5. 5.
    E. P. Giammelis, Adv. Mater., 8 (1996) 29.CrossRefGoogle Scholar
  6. 6.
    Z. Wang and T. J. Piammavaia, Chem. Mater., 10 (1998) 3769.CrossRefGoogle Scholar
  7. 7.
    W. B. Xu, M. I. Ge and P. S. He, J. Appl. Polym. Sci., 82 (2001) 2281.CrossRefGoogle Scholar
  8. 8.
    W. B. Xu, Z. F. Zhou, M. L. Ge and W.-P. Pan, J. Therm. Anal. Cal., 78 (2004) 91.CrossRefGoogle Scholar
  9. 9.
    W. B. Xu, S. P. Bao and P. S. He, J. Polym. Sci., 84 (2002) 842.Google Scholar
  10. 10.
    P. Hoai Nam, P. Maiti, M. Okamoto, T. Kotaka, N. Hasegawa and A. Usuki, Polymer, 42 (2001) 9633.CrossRefGoogle Scholar
  11. 11.
    M. Alexandre, P. Dubois, T. Sun, J. M. Garces and R. Jerome, Polymer, 42 (2002) 2123.CrossRefGoogle Scholar
  12. 12.
    A. S. Y. Shin, L. C. Simon, J. B. P. Soares and G. Scholz, Polymer, 44 (2003) 5317.CrossRefGoogle Scholar
  13. 13.
    J. G. Zhang and C. A. Wilkie, Polym. Degrad. Stab., 80 (2003) 163.CrossRefGoogle Scholar
  14. 14.
    M. Kato, A. Usuki and A. Okada, J. Appl. Polym. Sci., 66 (1997) 1781.CrossRefGoogle Scholar
  15. 15.
    M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki and A. Okada, Macromolecules, 30 (1997) 6333.CrossRefGoogle Scholar
  16. 16.
    K. H. Wang, M. H. Choi, C. M. Koo, Y. S. Choi and I. J. Chung, Polymer, 42 (2001) 9819.CrossRefGoogle Scholar
  17. 17.
    C. M. Koo, H. T. Ham, S. O. Kim, K. H. Wang and I. J. Chung, Macromolecules, 35 (2002) 5116.CrossRefGoogle Scholar
  18. 18.
    K. H. Wang, I. J. Chung, M. O. Jang, J. K. Keum and H. H. Song, Macromolecules, 35 (2002) 5529.CrossRefGoogle Scholar
  19. 19.
    T. G. Gopakumar, J. A. Lee, M. Kontopoulou and J. S. Parent, Polymer, 43 (2002) 5483.CrossRefGoogle Scholar
  20. 20.
    W. B. Xu and P. S. He, J. Appl. Poly. Sci., 80 (2001) 304.CrossRefGoogle Scholar
  21. 21.
    P. Supaphol and J. E. Spruiell, Polymer, 41 (2000) 1205.CrossRefGoogle Scholar
  22. 22.
    Y. Seo, J. Kim, K. U. Kim and Y. C. Kim, Polymer, 41 (2000) 2639.CrossRefGoogle Scholar
  23. 23.
    W. B. Xu, M. L. Ge and P. S. He, J. Polym. Sci. Part B: Polym. Phys., 40 (2002) 408.CrossRefGoogle Scholar
  24. 24.
    L. Markus, Polym. Eng. Sci., 38 (1998) 610.CrossRefGoogle Scholar
  25. 25.
    K. Nakamura, T. Watanabe, K. Katayama and T. Amano, J. Appl. Polym. Sci., 16 (1972) 1077.CrossRefGoogle Scholar
  26. 26.
    A. Jeziorny, Polymer, 19 (1978) 1142.CrossRefGoogle Scholar
  27. 27.
    T. Ozawa, Polymer, 12 (1971) 150.CrossRefGoogle Scholar
  28. 28.
    W. B. Xu, H. B. Zhai and H. Y. Guo, European Polym. J., in press.Google Scholar
  29. 29.
    M. J. Avrami, Chem. Phys., 9 (1941) 177.CrossRefGoogle Scholar
  30. 30.
    S. Srinivas, J. R. Babu, J. S. Riffle and G. L. Wilkes, Polym. Eng. Sci., 37 (1997) 497.CrossRefGoogle Scholar
  31. 31.
    T. X. Liu, Z. S. Mo, S. E. Wang and H. F. Zhang, Polym. Eng. Sci., 37 (1997) 568.CrossRefGoogle Scholar
  32. 32.
    Y. Ar, L. Li, Z. S. Mo and Z. L. Peng, J. Polym. Sci. Part B: Polym. Phys., 37 (1999) 443.CrossRefGoogle Scholar
  33. 33.
    H. E. Kissinger, J. Res. Nat. Bur. Stand. (US), 57 (1956) 217.Google Scholar

Copyright information

© Kluwer Academic Publisher/Akadémiai Kiadó 2004

Authors and Affiliations

  • W. B. Xu
    • 1
  • H. B. Zhai
    • 1
  • H. Y. Guo
    • 1
  • Z. F. Zhou
    • 1
  • N. Whitely
    • 2
  • W.-P. Pan
    • 2
  1. 1.Department of Polymer Science and EngineeringHefei University of Technology Hefei 230009AnhuiChina E-mail
  2. 2.Department of ChemistryMaterials Characterization Center Western KentuckyBowling GreenUSA

Personalised recommendations