Journal of Thermal Analysis and Calorimetry

, Volume 78, Issue 1, pp 73–82 | Cite as

Fluoroapatite - material for medicine, Growth, morphology and thermoanalytical properties

  • S. C. Mojumdar
  • J. Kozánková
  • J. Chocholoušek
  • J. Majling
  • D. Fábryová


Fluoroapatite containing glass-ceramics were prepared from Li2O-CaO-CaF2-P2O5-SiO2 system. The glass was melted at 1480°C for 1 h. The object of observation was the preparing crystal phase of fluoroapatite in amorphous glass matrix. The morphology of lithium disilicate glass-ceramics was studied by SEM. The crystal growth and thermal properties of fluoroapatite were studied by X-ray diffraction and DTA. The more the content of P2O5, the more the presence of fluoroapatite particles. SEM investigation clearly indicated the phase separation and formation of a primary crystalline phase of fluoroapatite in the studied glass-ceramics. DTA curves of the fluoroapatite samples exhibit exothermic effects in the temperature range 337-694°C depending on the composition of the materials. The position of exothermic peak for lithium disilicate on DTA curves moves with increasing specific surfacetowards lower temperatures which points on its preferential surface crystallization. As far as physical qualities are concerned, mainly color and gloss, the best qualities of all observed materials belong to glass-ceramics with 10% P2O5.

DTA synthesis morphology SEM XRD growth fluoroapatite P2O5 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Petránek, Encyklopedický slovník geologických vìd, pp. 78-79.Google Scholar
  2. 2.
    J. Moggi-Cecchi, Nature, 414 (2001) 595.CrossRefGoogle Scholar
  3. 3.
    I. Setnikar, Monofluorofosfat pri lieèbe osteoporózy, Lekárske listy, 11 (1997) 121.Google Scholar
  4. 4.
    W. Höland, V. Rheinberger and M. Frank, J. Non-Cryst. Solids, 253 (1999) 170.CrossRefGoogle Scholar
  5. 5.
    C. Moisescu, C. Jana, S. Habelitz, G. Carl and C. Rüssel, J. Non-Cryst. Solids, 248 (1999) 176.CrossRefGoogle Scholar
  6. 6.
    Y. Yue, C. Moisescu, G. Carl and C. Rüssel, Phys. Chem. Glasses, 40 (1999) 243.Google Scholar
  7. 7.
    J. Chocholoušek, Príprava sklokeramických materiálov riadenýmipostupmi nukleácie a kryštalizácie skiel. Dizertaèná práca, Bratislava 2003.Google Scholar
  8. 8.
    R. Sahoo, S. K. Bhattacharya and R. Debnath, J. Solid State Chem., 175 (2003) 218.CrossRefGoogle Scholar
  9. 9.
    M. Bosetti, E. Verne, C. V. Brovarone, C. Moisescu, M. Sabbatini and M. Cannas, J. Biomed. Mater. Res. A, 66A (2003) 615.CrossRefGoogle Scholar
  10. 10.
    S. H. Yu, H. Colfen and M. Antonietti, J. Phys. Chem. B, 107 (2003) 7396.CrossRefGoogle Scholar
  11. 11.
    A. Rafferty, R. G. Hill and D. Wood, J. Mater. Sci., 38 (2003) 2311.CrossRefGoogle Scholar
  12. 12.
    S. Taruta, K. Watanabe, K. Kitajima and N. Takusagawa, J. Non-Cryst. Solids, 321 (2003) 96.CrossRefGoogle Scholar
  13. 13.
    C. Gaillard, N. Chevalier and N. Millard-Pinard, Radiochim. Acta, 90 (2002) 511.CrossRefGoogle Scholar
  14. 14.
    K. Cheng, W. J. Weng, G. R. Han, P. Y. Du, G. Shen, J. Yang and J. M. F. Ferreira, Mater. Chem. Phys., 78 (2003) 767.CrossRefGoogle Scholar
  15. 15.
    S. V. Dobrydnev, V. V. Bogach and V. S. Beskov, Russ. J. Inorg. Chem., 47 (2002) 1214.Google Scholar
  16. 16.
    A. J. Nelson, T. Van Buuren, C. Bostedt, K. I. Schaffers and L. Terminello, Surf. Rev. Lett., 9 (2002) 387.CrossRefGoogle Scholar
  17. 17.
    J. Rakovan, R. J. Reeder, E. J. Elzinga, D. J. Cherniak, C. D. Tait and D. E. Morris, Environ. Sci. Technol., 36 (2002) 3114.CrossRefGoogle Scholar
  18. 18.
    S. A. Welch, A. E. Taunton and J. F. Banfield, Geomicrobiol. J., 19 (2002) 343.CrossRefGoogle Scholar
  19. 19.
    N. Koga, Z. Strnad, J. Sesták and J. Strnad, J. Therm. Anal. Cal., 71 (2003) 927.CrossRefGoogle Scholar
  20. 20.
    J. Majling, J. Therm. Anal. Cal., 67 (2003) 201.CrossRefGoogle Scholar
  21. 21.
    G. E. Romanos, V. Kasselouri, K. Beltsios and N. K. Kanellopoulos, J. Therm. Anal., 73 (2003) 183.CrossRefGoogle Scholar
  22. 22.
    I. Fanderlik, Vlastnosti skel, Informatorium, Praha 1996, p. 285.Google Scholar
  23. 23.
    J. Surovec, Dental, VVÚS Trenčin, 1986.Google Scholar

Copyright information

© Kluwer Academic Publisher/Akadémiai Kiadó 2004

Authors and Affiliations

  • S. C. Mojumdar
    • 1
  • J. Kozánková
    • 2
  • J. Chocholoušek
    • 3
  • J. Majling
    • 2
  • D. Fábryová
    • 2
  1. 1.Institute for Research in ConstructionNational Research Council of Canada M-20Ottawa, ON, K1A 0R6Canada E-mail
  2. 2.Department of Ceramics, Glass and CementSlovak University of Technology Radlinskeho-9, SK-81237BratislavaSlovakia
  3. 3.Technické sklo (Technical Glass) 844 03BratislavaSlovakia

Personalised recommendations