Skip to main content
Log in

Kinetic of thermal decomposition of residues from different kinds of composting

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Non-isothermal kinetic parameters regarding to the thermal decomposition of the ligninocellulosic fraction present in compost from urban solid residues (USR) obtained through stack covered (SC) with composted material, comes from the usine in composing of Araraquara city, Săo Paulo state, Brazil, and from stack containing academic restaurant organic solid residues (SAR). The samples were periodically revolved round 132 days of composting. Results from TG, DTG and DSC curves obtained on inert atmosphere indicated that the lignocellulosic fraction present, despite the slow degradation during the composting process, is thermally less stable than other substances originated during that process. The lignocellulosic fraction decomposition, between 200 and 400°C, were kinetically evaluated through non-isothermal methods of analysis. By using the Flynn-Wall and Ozawa isoconversional method, the medium activation energy, Ea, and pre-exponential factor, lgA, were 283.0±14.6, 257.6±1.3 kJ mol-1 and 25.4±0.8, 23.2±0.2 min-1, to the SC and SAR, respectively, at 95% confidence level. From E a and lgA values and DSC curves, Malek procedure could be applied, suggesting that the SB (Sesták-Berggren) kinetic model is suitable for the first thermal decomposition step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. G. Grossi, Tese de Doutorado, Instituto de Química, Universidade de São Paulo 1993, p. 222.

  2. X. T. He, S. J. Traina and T. J. Logan, J. Environ. Qual., 21 (1992) 318.

    CAS  Google Scholar 

  3. B. Chefetz, P. G. Hatcher, Y. Hadar and Y. Chen, J. Environ. Qual., 25 (1996) 776.

    Article  CAS  Google Scholar 

  4. S. C. Oliveira, C. A. Ribeiro, M. R. Santiago and M. S. Crespi, J. Compost and Utilization, 2002, submitted.

  5. P. Jandura, B. Riedel and B. Kokta, Polym. Degrad. Stab., 70 (2000) 387.

    Article  CAS  Google Scholar 

  6. M. E. Brown, D. Dollimore and A. K. Galwey, Reaction in the Solid State, Comprehensive Chemical Kinetics, Vol. 22, Elsevier, Amsterdam 1980.

    Google Scholar 

  7. D. Dollimore and P. Phang, Anal. Chem., 72 (2000) 27.

    Article  CAS  Google Scholar 

  8. S. Vyazovkin and C. A. Wight, Thermochim. Acta, 340–341 (1999) 53.

    Article  Google Scholar 

  9. T. Vlase, G. Vlase, M. Doca and N. Doca, J. Therm. Anal. Cal., 72 (2003) 579.

    Google Scholar 

  10. T. Vlase, G. Vlase, A. Chiriac and N. Doca, J. Therm. Anal. Cal., 72 (2003) 839.

    Article  CAS  Google Scholar 

  11. T. Vlase, G. Vlase, A. Chiriac and N. Doca, J. Therm. Anal. Cal., 72 (2003) 847.

    Article  CAS  Google Scholar 

  12. P. Budrugeac and E. Segal, J. Therm. Anal. Cal., 72 (2003) 831.

    Article  CAS  Google Scholar 

  13. J. H. Flynn and J. Wall, Nat. Bur. Stand., 70A (1966) 487.

    Google Scholar 

  14. T. Ozawa, Bull. Chem. Soc. Jpn., 38 (1965) 1881.

    Article  CAS  Google Scholar 

  15. T. Ozawa, J. Thermal Anal., 2 (1970) 301.

    Article  CAS  Google Scholar 

  16. C. Doyle, J. Appl. Polym. Sci., 6 (1962) 639.

    Article  CAS  Google Scholar 

  17. H. E. Kissinger, Anal. Chem., 29 (1957) 1702.

    Article  CAS  Google Scholar 

  18. J. Malek, J. Šesták, F. Rouquerol, J. Rouquerol, J. M. Criado and A. Ortega, J. Thermal Anal., 38 (1992) 71.

    Article  CAS  Google Scholar 

  19. J. Malek, J. Therm. Anal. Cal., 56 (1999) 763.

    Article  CAS  Google Scholar 

  20. J. Malek, Thermochim. Acta, 355 (2000) 239.

    Article  CAS  Google Scholar 

  21. J. Malek, J. Mat. Res., 16 (2001) 1862.

    CAS  Google Scholar 

  22. S. C. Oliveira, Dissertação de Mestrado, Instituto de Química, Universidade Estadual Paulista, 1997.

  23. J. Šesták and G. Berggren, Thermochim. Acta, 3 (1971) 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Crespi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, A.R., Crespi, M.S., Ribeiro, C.A. et al. Kinetic of thermal decomposition of residues from different kinds of composting. Journal of Thermal Analysis and Calorimetry 75, 401–409 (2004). https://doi.org/10.1023/B:JTAN.0000027126.92699.ba

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JTAN.0000027126.92699.ba

Navigation