Skip to main content
Log in

Some New Developments in the Theory of Path Integrals, with Applications to Quantum Theory

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A survey of recent developments concerning rigorously defined infinite dimensional integrals, mainly of the type of “Feynman path integrals,” is given. Both the theory and its applications, especially in quantum theory, are presented. As for the theory, general results are discussed including the case of polynomially growing phase functions, which are handled by exploiting the connection with probabilistic functional integrals. Also applications to continuous measurement theory and the stochastic Schrödinger equation are given. Other applications of probabilistic methods in non relativistic quantum theory and in quantum field theory, and their relations with statistical mechanics, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Albeverio, Wiener and Feynman path integrals and their applications, in Proceedings of Symposia in Applied Mathematics, Vol. 52 (1997), pp. 163–194.

    Google Scholar 

  2. S. Albeverio, M. Schachermayer, and M. Talagand, Lectures on Probability Theory and Statistics, Proceedings of École d'Été de Probabilités de Saint-Flour 2000, P. Bernard, ed., Lecture Notes in Mathematics 1816 (Springer, Berlin, 2003).

    Google Scholar 

  3. S. Albeverio, A. M. Boutet de Monvel-Berthier, and Z. Brzeźniak, The trace formula for Schrödinger operators from infinite dimensional oscillatory integrals, Math. Nachr. 182: 21–65 (1996).

    Google Scholar 

  4. S. Albeverio and Z. Brzeźniak, Finite-dimensional approximation approach to oscillatory integrals and stationary phase in infinite dimensions, J. Funct. Anal. 113:177–244 (1993).

    Google Scholar 

  5. S. Albeverio and Z. Brzeźniak, Oscillatory integrals on Hilbert spaces and Schrödinger equation with magnetic fields, J. Math. Phys. 36:2135–2156 (1995).

    Google Scholar 

  6. S. Albeverio, Z. Brzeźniak, and Z. Haba, On the Schrödinger equation with potentials which are Laplace transforms of measures, Potential Anal. 9:65–82 (1998).

    Google Scholar 

  7. S. Albeverio, J. E. Fenstad, R. Høegh-Krohn, and T. Linstrøm, Pure and Applied Mathematics, Vol. 122 (Academic Press, Orlando, FL, 1986).

  8. S. Albeverio and H. Gottschalk, Scattering theory for quantum fields with indefinite metric, Comm. Math. Phys. 216:491–513 (2001).

    Google Scholar 

  9. S. Albeverio, H. Gottschalk, and M. Yoshida, Representing Euclidean quantum fields as scaling limit of particle systems, J. Stat. Phys. 108:361–369 (2002).

    Google Scholar 

  10. S. Albeverio, H. Gottschalk, and J. L. Wu, Convoluted generalized white noise, Schwinger functions, and their analytic continuation, Rev. Math. Phys. 8:763–817 (1996).

    Google Scholar 

  11. S. Albeverio, H. Gottschalk, and J. L. Wu, Models of local relativistic quantum fields with indefinite metric (in all dimensions), Comm. Math. Phys. 184:509–531 (1997).

    Google Scholar 

  12. S. Albeverio, G. Guatteri, and S. Mazzucchi, Phase space Feynman path integrals, J. Math. Phys. 43:2847–2857 (2002).

    Google Scholar 

  13. S. Albeverio, G. Guatteri, and S. Mazzucchi, Representation of the Belavkin equation via Feynman path integrals, Probab. Theory Related Fields 125:365–380 (2003).

    Google Scholar 

  14. S. Albeverio, G. Guatteri, and S. Mazzucchi, Representation of the Belavkin equation via phase space Feynman path integrals, to appear in IDAQP.

  15. S. Albeverio, A. Hahn, and A. Sengupta, Rigorous Feynman path integrals, with applications to quantum theory, gauge fields, and topological invariants, SFB 611, Preprint, Bonn, No. 58, 2003, to appear in Proc. Conf. Mathematical Legacy of Feynman's Path Integral, Lisbone 2003.

  16. S. Albeverio, V. N. Kolokol'tsov, and O. G. Smolyanov, Représentation des solutions de l'équation de Belavkin pour la mesure quantique par une version rigoureuse de la formule d'intégration fonctionnelle de Menski, C. R. Acad. Sci. Paris Sér. I Math. 323:661–664 (1996).

    Google Scholar 

  17. S. Albeverio, V. N. Kolokol'tsov, and O. G. Smolyanov, Continuous quantum measurement: Local and global approaches, Rev. Math. Phys. 9:907–920 (1997).

    Google Scholar 

  18. S. Albeverio and R. Høegh-Krohn, Mathematical Theory of Feynman Path Integrals, Lecture Notes in Mathematics, Vol. 523 (Springer-Verlag, Berlin, 1976).

    Google Scholar 

  19. S. Albeverio, R. Høegh-Krohn, J. E. Fenstad, and T. Lindstrøm, Nonstandard Methods in Stochastic Analysis and Mathematical Physics (Academic Press, New York, 1986), [also translated into Russian by A. K. Svonskin and M. A. Shubin (Mir, Moscow, 1990)].

    Google Scholar 

  20. S. Albeverio and S. Mazzucchi, Generalized Fresnel Integrals, Preprint of the University of Bonn, No. 59 (2003).

  21. S. Albeverio and S. Mazzucchi, Feynman Path Integrals for Polynomially Growing Potentials, Preprint of the University of Trento, UTM 638 (2003).

  22. S. Albeverio and M. Röckner, Stochastic differential equations in infinite dimensions: Solutions via Dirichlet forms, Probab. Theory Related Fields 89:347–386 (1991).

    Google Scholar 

  23. S. Albeverio and M. Röckner, Classical Dirichlet forms on topological vector spaces— The construction of the associated diffusion process, Probab. Theory Related Fields 83:405–434 (1989).

    Google Scholar 

  24. S. Albeverio and M. Röckner, Dirichlet forms, quantum fields, and stochastic quantization, in Stochastic Analysis, Path Integration, and Dynamics, Pitman Res. Notes Math. Ser., Vol. 200 (Longman Sci. Tech., Harlow, 1989), pp. 1–21.

    Google Scholar 

  25. S. Albeverio and B. Rüdiger, Infinite dimensional Stochastic differential equations obtained by subordination and related Dirichlet forms, J. Funct. Anal. 204:122–156 (2003).

    Google Scholar 

  26. S. Albeverio, B. Rüdiger, and J. L. Wu, Analytic and Probabilistic Aspects of Lévy Processes and Fields in Quantum Theory, O. E. Bandorff-Nielsen, T. Mikosch, and S. L. Resnick, eds. (Birkhäuser Boston, Boston, MA, 2001), pp. 187–224.

    Google Scholar 

  27. S. Albeverio and J. Schäfer, Abelian Chern-Simons theory and linking numbers via oscillatory integrals, J. Math. Phys. 36:2157–2169 (1995).

    Google Scholar 

  28. S. Albeverio and A. Sengupta, A mathematical construction of the non-Abelian Chern- Simons functional integral, Comm. Math. Phys. 186:563–579 (1997).

    Google Scholar 

  29. R. Azencott and H. Doss, L'équation de Schrödinger quand h tend vers zéro: Une approche probabiliste (French) [The Schrödinger equation as h tends to zero: A probabilistic approach], in Stochastic Aspects of Classical and Quantum Systems (Marseille, 1983), Lecture Notes in Math., Vol. 1109 (Springer, Berlin, 1985), pp. 1–17.

    Google Scholar 

  30. V. P. Belavkin, A new wave equation for a continuous nondemolition measurement, Phys. Lett. A 140:355–358 (1989).

    Google Scholar 

  31. G. Ben Arous and F. Castell, A probabilistic approach to semi-classical approximations, J. Funct. Anal. 137:243–280 (1996).

    Google Scholar 

  32. L. Bertini, G. Jona-Lasinio, and C. Parrinello, Stochastic quantization, stochastic calculus, and path integrals: Selected topics, Progr. Theoret. Phys. Suppl. 111:83–113 (1993).

    Google Scholar 

  33. R. H. Cameron, A family of integrals serving to connect the Wiener and Feynman integrals, J. Math. Phys. 39:126–140 (1960).

    Google Scholar 

  34. P. Cartier and C. DeWitt-Morette, Functional integration, J. Math. Phys. 41:4154–4187 (2000).

    Google Scholar 

  35. D. M. Chung, Conditional analytic Feynman integrals on Wiener spaces, Proc. AMS 112:479–488 (1991).

    Google Scholar 

  36. K. L. Chung and J. C. Zambrini, Introduction to Random Time and Quantum Randomness, Monographs of the Portuguese Mathematical Society (McGraw-Hill, Lisbon, 2001).

    Google Scholar 

  37. A. B. Cruzeiro, L. Wu, and J. C. Zambrini, Bernstein processes associated with a Markov process, in Stochastic Analysis and Mathematical Physics (Santiago, 1988), Trends. Math. (Birkhäuser Boston, Boston, MA, 2000), pp. 41–72.

    Google Scholar 

  38. I. Daubechies and J. R. Klauder, Quantum-mechanical path integrals with Wiener measure for all polynomial Hamiltonians II, J. Math. Phys. 26:2239–2256 (1985).

    Google Scholar 

  39. G. F. De Angelis, G. Jona-Lasinio, and V. Sidoravicius, Berezin integrals and Poisson processes, J. Phys. A 31:289–308 (1998).

    Google Scholar 

  40. M. De Faria, H. H. Kuo, and L. Streit, The Feynman integrand as a Hida distribution, J. Math. Phys. 32:2123–2127 (1991).

    Google Scholar 

  41. H. Doss, Sur une résolution stochastique de l'équation de Schrödinger à coefficients analytiques, Comm. Math. Phys. 73:247–264 (1980).

    Google Scholar 

  42. D. Elworthy and A. Truman, Feynman maps, Cameron-Martin formulae, and anharmonic oscillators, Ann. Inst. H. Poincaré Phys. Théor. 41:115–142 (1984).

    Google Scholar 

  43. M. V. Fedoriuk and V. P. Maslov, Semi-Classical Approximation in Quantum Mechanics (D. Reidel, Dordrecht, 1981).

    Google Scholar 

  44. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    Google Scholar 

  45. J. Glimm and A. Jaffe, Quantum Physics. A Functional Integral Point of View (Springer-Verlag, New York, 1987).

    Google Scholar 

  46. H. Gottschalk, Particle Systems with Weakly Attractive Interactions, Preprint of the University of Bonn (Sept. 2002), (www.lqp.uni-goettingen.de/papers/02/08/).

  47. H. Gottschalk and H. Thaler, Interacting Quantum Fields with Indefinite Metric on Globally Hyperbolic Space-Times, Preprint of the University of Bonn, SFB 611 n.10.

  48. L. Gross, Abstract Wiener spaces, in Proc. 5th Berkeley Symp. Math. Stat. Prob., Vol. 2 (1965), pp. 31–42.

    Google Scholar 

  49. T. Hida, H. H. Kuo, J. Potthoff, and L. Streit, White Noise (Kluwer, Dordrecht, 1995).

    Google Scholar 

  50. K. Ito, Wiener integral and Feynman integral, in Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 2 (California University Press, Berkeley, 1961), pp. 227–238.

    Google Scholar 

  51. K. Ito, Generalized uniform complex measures in the Hilbertian metric space with their applications to the Feynman path integral, Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 2, Part 1 (California University Press, Berkeley, 1967), pp. 145–161.

    Google Scholar 

  52. G. W. Johnson and M. L. Lapidus, The Feynman Integral and Feynman's Operational Calculus (Oxford University Press, New York, 2000).

    Google Scholar 

  53. G. Jona-Lasinio, Invariant measures under Schrödinger evolution and quantum statistical mechanics, in Stochastic Processes, Physics, and Geometry: New Interplays, I (Leipzig, 1999), CMS Conf. Proc., Vol. 28 (Amer. Math. Soc., Providence, RI, 2000), pp. 239–242.

    Google Scholar 

  54. G. Jona-Lasinio, Stochastic processes and quantum mechanics, Colloquium in Honor of Laurent Schwartz, Vol. 2 (Palaiseau, 1983), Astérisques, No. 132 (1985), pp. 203–216.

    Google Scholar 

  55. G. Jona-Lasinio, G. Martinelli, and E. Scoppola, Tunneling in One Dimension: General Theory, Instabilities, Rules of Calculation, Applications, Mathematics+physics, Vol. 2 (World Scientific, Singapore, 1986), pp. 227–260.

    Google Scholar 

  56. G. Jona-Lasinio and P. K. Mitter, On the stochastic quantization of field theory, Comm. Math. Phys. 101:409–436 (1985).

    Google Scholar 

  57. G. Jona-Lasinio and P. K. Mitter, Large deviation estimates in the stochastic quantization of Φ 4 2, Comm. Math. Phys. 130:111–121 (1990).

    Google Scholar 

  58. G. Jona-Lasinio and R. Sénéor, On a class of stochastic reaction-diffusion equations in two space dimensions, J. Phys. A 24:4123–4128 (1991).

    Google Scholar 

  59. G. Jona-Lasinio and R. Sénéor, Study of stochastic differential equations by constructive methods I, J. Stat. Phys. 83:1109–1148 (1996).

    Google Scholar 

  60. G. Kallianpur, D. Kannan, and R. L. Karandikar, Analytic and sequential Feynman integrals on abstract Wiener and Hilbert spaces, and a Cameron-Martin Formula, Ann. Inst. H. Poincaré, Prob. Th. 21:323–361 (1985).

    Google Scholar 

  61. T. Kuna, L. Streit, and W. Westerkamp, Feynman integrals for a class of exponentially growing potentials, J. Math. Phys. 39:4476–4491 (1998).

    Google Scholar 

  62. H. H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Math. (Springer-Verlag, Berlin/Heidelberg/New York, 1975).

    Google Scholar 

  63. S. Leukert and J. Schäfer, A rigorous construction of Abelian Chern-Simons path integrals using white noise analysis, Rev. Math. Phys. 8:445–456 (1996).

    Google Scholar 

  64. V. Mandrekar, Some remarks on various definitions of Feynman integrals, in Lectures Notes in Math., K. Jacob Beck, ed. (1983), pp. 170–177.

  65. V. P. Maslov, Méthodes opérationelles (Mir, Moscou, 1987).

    Google Scholar 

  66. P. Mullowney, A General Theory of Integration in Function Spaces, Pitman Research Notes in Mathematics, Vol. 153 (1987).

  67. E. Nelson, Feynman integrals and the Schrödinger equation, J. Math. Phys. 5:332–343 (1964).

    Google Scholar 

  68. J. Rezende, The method of stationary phase for oscillatory integrals on Hilbert spaces, Comm. Math. Phys. 101:187–206 (1985).

    Google Scholar 

  69. M. Reed and B. Simon, Methods of Modern Mathematical Physics. Fourier Analysis, Self-Adjointness (Academic Press, New York, 1975).

    Google Scholar 

  70. B. Simon, Functional Integration and Quantum Physics (Academic Press, New York/ London, 1979).

    Google Scholar 

  71. B. Simon, The P(Φ) 2 Euclidean (Quantum) Field Theory, Princeton Series in Physics (Princeton University Press, Princeton, NJ).

  72. O. G. Smolyanov and E. T. Shavgulidze, Path Integrals (Moskov. Gos. Univ., Moscow, 1990).

    Google Scholar 

  73. H. Thaler, Solution of Schrödinger equations on compact Lie groups via probabilistic methods, to appear in Potential Analysis.

  74. A. Truman, The Feynman maps and the Wiener integral, J. Math. Phys. 19:1742–1750 (1978).

    Google Scholar 

  75. K. Yajima, Smoothness and non-smoothness of the fundamental solution of time dependent Schrödiger equations, Comm. Math. Phys. 181:605–629 (1996).

    Google Scholar 

  76. J. C. Zambrini, Feynman integrals, diffusion processes and quantum symplectic two-forms, J. Korean Math. Soc. 38:385–408 (2001).

    Google Scholar 

  77. T. J. Zastawniak, Equivalence of Albeverio-Høegh-Krohn-Feynman Integral for Anharmonic Oscillators and the Analytic Feynman Integral, Univ. Iagel. Acta Math., Vol. 28 (1991), pp. 187–199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

BiBoS; IZKS; SFB611; CERFIM (Locarno); Acc. Arch. (Mendrisio)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albeverio, S., Mazzucchi, S. Some New Developments in the Theory of Path Integrals, with Applications to Quantum Theory. Journal of Statistical Physics 115, 191–215 (2004). https://doi.org/10.1023/B:JOSS.0000019836.37663.d9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000019836.37663.d9

Navigation