Skip to main content
Log in

On the “Matrix Approach” to Interacting Particle Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Derrida et al. and Schütz and Stinchcombe gave algebraic formulas for the correlation functions of the partially asymmetric simple exclusion process. Here we give a fairly general recipe of how to get these formulas and extend them to the whole time evolution (starting from the generator of the process), for a certain class of interacting systems. We then analyze the algebraic relations obtained to show that the matrix approach does not work with some models such as the voter and the contact processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, A matrix method of solving an asymmetric exclusion model with open boundaries, in Cellular Automata and Cooperative Systems, N. Boccara, E. Goles, S. Martinez, and P. Picco, eds. (1993).

  2. B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation, J. Phys. A: Math. Gen. 26:1493–1517 (1993).

    Google Scholar 

  3. B. Derrida, An exactly soluble non-equilibrium system: The asymmetric simple exclusion process, Phys. Rep. 301:65–83 (1998).

    Google Scholar 

  4. B. Derrida, J. L. Lebowitz, and E. R. Speer, Shock profiles for the asymmetric simple exclusion process in one dimension, J. Stat. Phys. 89:135–167 (1997).

    Google Scholar 

  5. B. Derrida, C. Enaud, and J. Lebowitz, The asymmetric exclusion process and brownian excursions, Cond-mat/0306078, and references therein.

  6. L. De Sanctis and M. Isopi, in preparation.

  7. H. Hinrichsen, Critical Phenomena in Nonequilibrium Systems, Habilitationsschrift (2000).

  8. A. Honecker and I. Peschel, Matrix-product states for a one-dimensional lattice gas with parallel dynamics, J. Stat. Phys. 88:319(1997).

    Google Scholar 

  9. A. P. Isaev, P. N. Pyatov, and V. Rittenberg, Diffusion algebras, J. Phys. A-Math. Gen. 34:5815–5834 (2001).

    Google Scholar 

  10. T. M. Liggett, Stochastic Interacting Systems: Contact, Voter, and Exclusion Processes (Springer, 1999).

  11. T. M. Liggett, Ergodic theorems for the asymmetric simple exclusion process, Trans Amer. Math. Soc. 213:237–261 (1975).

    Google Scholar 

  12. R. B. Stinchcombe and G. M. Schütz, Application of operator algebras to stochastic dynamics and the Heisenberg chain, Phys. Rev. Lett. 75:140–143 (1995).

    Google Scholar 

  13. R. B. Stinchcombe and G. M. Schütz, Operator algebras for stochastic dynamics and the Heisenberg chain, Europhys. Lett. 29:663–667 (1995).

    Google Scholar 

  14. G. M. Schütz, Stochastic many-body systems and quantum spin chains, Resenhas IME-USP 4:17–43 (1999).

    Google Scholar 

  15. G. M. Schütz, Exactly solvable models for many-body systems far from equilibrium, in Phase Transitions and Critical Phenomena, C. Domb and J. Lebowitz, eds. (Academic Press, London, 2000).

    Google Scholar 

  16. V. Popkov, M. E. Fouladvand, and G. M. Schütz, A sufficient criterion for integrability of stochastic many-body dynamics and quantum spin chains, J. Phys. A-Math. Gen. 35:7187–7204 (2002).

    Google Scholar 

  17. A. M. Vershik, Algebras with quadratic relations, Selecta Math. Soviet. 11:293–315 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Sanctis, L., Isopi, M. On the “Matrix Approach” to Interacting Particle Systems. Journal of Statistical Physics 115, 383–393 (2004). https://doi.org/10.1023/B:JOSS.0000019828.19669.37

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000019828.19669.37

Navigation