Skip to main content
Log in

The Principles of Developing the Ball Lightning Theory

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Criteria for developing the ball lightning theory based on the results of observations are analyzed. It is assumed that the key features of ball lightning are a large energy (more than 106 J) and long lifetime (more than 1 s). We exclude from consideration theories which do not explain these features and concentrate our attention on the analysis of three models where the large energy of the autonomous ball lightning and the forces providing the compression of the ball lightning substance are taken into account. The first considered model was developed by Geert Dijkhuis, in which the appearance of a force directed towards the system center is attributed to the Bose condensation of vortices of degenerated electrons as well as to gradient forces arising due to a nonuniform distribution of the electron density over the ball lightning volume. The second model proposed by Vladimir Bychkov assumed that the energy reservoir of ball lightning is polymer threads carrying a big electric charge. Our model assumes that the energy is stored in the form of kinetic energy of ions which the positively charged core of ball lightning is thought to consist of. The core is compressed by a dielectric shell which, in turn, is shrunk by the force created due to the nonuniform electric field of the core. The merits and limitations of these and other models are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Stenhoff, Ball Lightning. An Unsolved Problem in Atmospheric Physics, Kluwer Academic/Plenum Publishers, New York (1999).

    Google Scholar 

  2. K. L. Corum and J. F. Corum, Sov. Phys.: Uspekhi, 160, 47 (1990).

    Google Scholar 

  3. P. A. Silberg, “Ball lightning,” in: S. C. Coronititi (ed.), Problems of Atmospheric and Space Electricity. Proceedings of the Third International Conference on Atmocpheric and Space Electricity (Montreux, Switzerland, 1963), Elsevier (1965), p. 303.

  4. A. I. Klimov and V. L. Bychkov, “High energetic long-lived non-equilibrium ball plasmoids in a gas flow and in the atmosphere,” in: Proceedings of the 6th International Symposium on Ball Lightning (Antwerp, Belgium, 1999), p. 212.

  5. A. I. Grigor'ev, I. D. Grigor'eva, and S. O. Shiriaeva, “Observations of ball lightning and their analysis,” in: B. M. Smirnov (ed.), Khimiya Plasmy [in Russian], Energoatomizdat, Moscow (1993), p. 218.

    Google Scholar 

  6. A. Kh. Amirov, V. L. Bychkov, and A. Yu. Strijev, J. Meteorol., 20, 85 (1995).

    Google Scholar 

  7. W. D. Rayle, “Ball lightning characteristics,” NASA Techn. Note D-3188 (1966).

  8. J. R. McNally Jr., “Preliminary report on ball lightning,” Oak Ridge Nat. Lab. No. 938 (May 1966).

  9. G. Egely, “Analysis of Hungarian ball lightning observations,” in: A. G. Keul (ed.), Progress in Ball Lightning Research. Proceedings VIZOTUM (Salzburg, Austria, 1993), p. 22.

  10. P. Hubert, “Nouvelle enquete sur la foudre en boule — Analyse et discussion des resultats,” Rapport PH/SC/96001, Commisariat a l'Energy Atomique, Service d'Electronique Physique, Centre d'Etudes Nucleairs de Saclay, France (1996).

    Google Scholar 

  11. G. C. Dijkhuis (ed.), Statistics and Structure of Ball Lightning. Proceedings of the Third International Symposium on Ball Lightning (Los Angeles, USA, 1992).

  12. B. L. Goodlet, J. IEE, 81, 1 (1937).

    Google Scholar 

  13. S. Singer, The Nature of Ball Lightning, Plenum Publishers, New York (1971).

    Google Scholar 

  14. J. D. Barry, Ball Lightning and Bead Lightning, Plenum Publishers, New York (1980).

    Google Scholar 

  15. I. Imianitov and D. Tikhii, Beyond the Laws of Science [in Russian], Atomizdat, Moscow (1980).

    Google Scholar 

  16. M. T. Dmitriev, B. I. Bakhtin, and V. I. Martynov, Zh. Tekh. Fiz., 51, 2567 (1981).

    Google Scholar 

  17. A. Batygin and I. Mosin, “Visit of ‘Fairy Lady’,” Pravda, Moscow, No. 220[25938], 6 (1989).

    Google Scholar 

  18. A. E. Covington, “Ball lightning,” Nature, 226, 252 (1970).

    Google Scholar 

  19. P. D. Zimmerman, “Energy content of Covington's ball lightning,” Nature, 228, 853 (1970).

    Google Scholar 

  20. B. N. Kozlov, “About maximum energy output of ball lightning,” Sov. Phys.: Doklady, 238, 61 (1978).

    Google Scholar 

  21. M. D. Altschuler, L. L. Houste, and E. Hildner, “Is ball lightning a nuclear phenomenon?” Nature, 228, 545 (1970).

    Google Scholar 

  22. V. V. Balyberdin, Aircraft Construction & Air Fleet Technology [in Russian], Khar'kov State University (1965), No. 3, p. 102.

  23. P. L. Kapitza, “About the nature of ball lightning,” Sov. Phys.: Doklady, 101, 254 (1955).

    Google Scholar 

  24. D. Finkelstein and J. Rubinstein, Phys. Rev. A, 135, 390 (1964).

    Google Scholar 

  25. P. H. Handel, “Maser theory of ball lightning,” Bull. Am. Phys. Soc., Ser. II, 20, 26 (1975).

    Google Scholar 

  26. G. Schmidt, Phys. Fluid., 3, 481 (1960).

    Google Scholar 

  27. G. Endean, “The Virial theorem with an extension for statically electrified gaseous spheres,” in: Proceedings of the 5th International Symposium on Ball Lightning (Tsugawa, Japan, 1997), p. 96.

  28. D. B. Muldrew, Geophys. Res. Lett., 17, 2277 (1990).

    Google Scholar 

  29. V. L. Bychkov, Phys. Scr., 50, 591 (1994).

    Google Scholar 

  30. V. L. Bychkov, A. V. Bychkov, and S. A. Stadnik, Phys. Scr., 53, 749 (1996).

    Google Scholar 

  31. T. Neugebauer, “Zu dem Problem des Kugelblitzes,” Zeitschr. Phys., 106, 474 (1937).

    Google Scholar 

  32. G. C. Dijkhuis, “A model for ball lightning,” Nature, 248, 150 (1980).

    Google Scholar 

  33. G. C. Dijkhuis, “Plasmoid confinement by the charged particle microfields,” Nature, 290, 166 (1981).

    Google Scholar 

  34. B. M. Smirnov, Sov. Phys.: Uspekhi, 160, 1 (1990).

    Google Scholar 

  35. B. M. Smirnov, The Problem of Ball Lightning [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  36. E. A. Manykin, M. I. Ojovan, and P. P. Poluèktov, Zh. Tekh. Fiz., 52, 1474 (1982).

    Google Scholar 

  37. I. P. Stakhanov, About the Physical Nature of Ball Lightning [in Russian], Energoatomizdat, Moscow (1985).

    Google Scholar 

  38. R. F. Avramenko, V. L. Bychkov, A. I. Klimov, and O. A. Sinkevich, Ball Lightning in Laboratory [in Russian], Khimiya, Moscow (1994).

    Google Scholar 

  39. D. J. Turner, Phys. Rep., 293, 1 (1998).

    Google Scholar 

  40. W. H. Bostick, Phys. Rev., 104, 242 (1956).

    Google Scholar 

  41. W. H. Bostick, Phys. Rev., 106, 404 (1957).

    Google Scholar 

  42. V. D. Shafranov, Zh. Èksp. Teor. Fiz., 33, 710 (1957).

    Google Scholar 

  43. M. Rosenbluth and M. Bussac, Nucl. Fusion, 19, 489 (1979).

    Google Scholar 

  44. P. M. Koloc, Fusion Tech., 15, 1136 (1989).

    Google Scholar 

  45. R. Kaiser and D. Lortz, Phys. Rev. E, 52, 3034 (1995).

    Google Scholar 

  46. G. C. Dijkhuis, “State equation and phase diagram for fractal growth in ball lightning,” in: Kikuchi (ed.), Environment and Space Electron, Springer, Tokyo (1991), p. 535.

    Google Scholar 

  47. R. P. Feynmann, R. B. Leighton, and M. Sands, The Feynmann Lectures on Physics, Addison-Wesley, Palo Alto/London (1963), Vol. 3.

    Google Scholar 

  48. L. A. Artsimovich, Controlled Thermonuclear Reactions [in Russian], Fizmatgiz, Moscow (1961), p. 6.

    Google Scholar 

  49. A. N. Vlasov, “Bose—Einstein condensed electron catalyzed fusion as a possible mechanism of ball lightning energy supply,” in: Proceedings of the 6th International Symposium on Ball Lightning (Antwerp, Belgium, 1999), p. 133.

  50. F. N. Shakirzianov, Èlektrichestvo, No. 10, 74 (1999).

    Google Scholar 

  51. V. Paraphonova, “Nuclear fusion in a laser spark,” Nauka i Zhizn' No. 2, 2 (2003).

    Google Scholar 

  52. G. A. Dawson and R. C. Jones, Pure Appl. Geophys., 75, 247 (1969).

    Google Scholar 

  53. G. Endean, J. Meteorology, 22, 98 (1997).

    Google Scholar 

  54. S. G. Kalashnikov, Electricity [in Russian], Nauka, Moscow (1985), p. 205.

    Google Scholar 

  55. G. H. Arnhoff, “On the spheric radiation,” in: Proceedings of the 6th International Symposium on Ball Lightning (Antwerp, Belgium, 1999), p. 160.

  56. De Tessan, “Sur la foudre en boule,” Compte Rendu, 49, 189 (1859).

    Google Scholar 

  57. V. I. Kirianov, “Investigation and development of photoinitiated pulse chemical lasers of module type,” PHD Thesis [in Russian], Institute for Problems of Chemical Physics, Chernogolovka, Moscow Region (2002), p. 246.

    Google Scholar 

  58. P. Brovetto, V. Maxia, and G. Bussetti, J. Atm. Terrestr. Phys., 38, 921 (1976).

    Google Scholar 

  59. A. I. Nikitin, Èlektrichestvo, No. 11, 14 (1988).

    Google Scholar 

  60. A. I. Nikitin, Èlektrik. Tekhnol., No. 4, 70 (1998).

    Google Scholar 

  61. A. I. Nikitin, “The dynamic capacitor model of ball lightning,” in: Proceedings of the 6th International Symposium on Ball Lightning (Antwerp, Belgium, 1999), p. 81.

  62. A. I. Nikitin, “The way to solve the ball lightning enigma,” Èlectrichestvo i Zhizn', No. 1, 32; No. 2, 22; No. 3, 28; No. 4, 20 (2000).

    Google Scholar 

  63. O. Anderson, W. R. Baker, A. Bratenahl, H. P. Furth, and W. B. Kunkel, J. Appl. Phys., 30, 188 (1959).

    Google Scholar 

  64. A. I. Nikitin, “Analysis of the energy content and stability of ball lightning,” in: Proceedings of the 9th Russian Conference on Cold Nuclear Transmutation of Chemical Elements (Dagomys, Sochi, Russia, 2001), Moscow, Èrzion (2002), p. 257.

    Google Scholar 

  65. J. A. Chalmers, Atmospheric Electricity, Clarendon Press, Oxford (1949).

    Google Scholar 

  66. R. C. Jennison, “Ball lightning,” Nature, 224, 895 (1969).

    Google Scholar 

  67. G. V. Nikolaev, Mysteries of Electromagnetism [in Russian], Znamya Mira, Tomsk (2001), p. 32.

    Google Scholar 

  68. M. T. Dmitriev, “The nature of ball lightning,” Priroda, 56,No. 6, 98 (1976).

    Google Scholar 

  69. N. I. Gaydukov, Zh. Tekh. Fiz., 59, 88 (1989).

    Google Scholar 

  70. N. I. Gaydukov, Zh. Tekh. Fiz., 62, 27 (1992).

    Google Scholar 

  71. D. J. Turner, J. Meteorology, 22, 52 (1997).

    Google Scholar 

  72. L. M. Gindilis and Yu. K. Kolpakov, “Petrozavodsk's phenomenon. 6. Holes in Glass” (1978); http://www.astronet.ru:8101/db/msg/1169491/6-1.htmr

  73. O. A. Kolosovsky, Zh. Tekh. Fiz., 51, 856 (1981).

    Google Scholar 

  74. G. Shchelkunov, “Ball lightning: observations and analysis of traces,” Nauka Zhizn', No. 10, 52 (2001).

    Google Scholar 

  75. Y. H. Ohtzuki and H. Ofuruton, “Plasma fireballs formed by microwave interference in air,” Nature, 350, 139 (1991).

    Google Scholar 

  76. J. McDonald, “UFO encounter I,” Astronautics and Aeronautics, No. 7, 66 (1971).

    Google Scholar 

  77. M. D. Mashkovich, Electric Properties of Non-organic Dielectrics in the Microwave Range [in Russian], Sovetskoe Radio, Moscow (1969).

    Google Scholar 

  78. H. Ofuruton, N. Kondo, M. Kamogawa, M. Aoki, and Y.-H. Ohtsuki, J. Geophys. Res., 106, 12367 (2001).

    Google Scholar 

  79. F. F. Chen, Introduction to Plasma Physics, Plenum Press, New York (1974).

    Google Scholar 

  80. A. I. Nikitin, Èlectrichestvo, No. 3, 16 (2000).

    Google Scholar 

  81. A. I. Nikitin, “How ball lightning can be created in the nature,” in: Proceedings of the 6th International Symposium on Ball Lightning (Antwerp, Belgium, 1999), p. 85.

  82. A. I. Nikitin, “The way to solve the ball lightning enigma,” Èlectrichestvo i Zhizn', No. 5, 26 (2000).

    Google Scholar 

  83. M. A. Uman, Lightning, McGraw-Hill, New York (1969).

    Google Scholar 

  84. G. C. Dijkhuis, “Scaling law for fusion power from boson vortex in ball lightning,” in Proceedings of the International Symposium on Electromagnetic Compatibility (Wroclaw, Poland, 1988), p. 21.

  85. G. C. Dijkhuis, “Helix string model for turbulent vorticity and cavitation in shearing arc plasma,” in: P. Fauchais, van der Mullen, and J. Herbelein (eds.), Heat and Mass Transfer Under Plasma Conditions, Ann. New York Acad. Sci., 891, 259 (1999).

  86. B. E. Meierovich, The Channel of a Strong Current [in Russian], Fima, Moscow (1999).

    Google Scholar 

  87. S. I. Braginsky, Zh. Èksp. Teor. Fiz., 33, 645 (1957).

    Google Scholar 

  88. R. S. Pease, Proc. Phys. Soc. B, 70, 11 (1957).

    Google Scholar 

  89. J. M. Meek and J. D. Craggs, Electrical Breakdown of Gases, Clarendon Press, Oxford (1953).

    Google Scholar 

  90. G. C. Dijkhuis and J. Pijpelink, “Performance of high-voltage test facility designed for investigation of ball lightning,” in: Y.-H. Ohtsuki (ed.), Science of Ball Lightning (Fire Ball), World Scientific, Singapore (1989), p. 325.

    Google Scholar 

  91. P. Weiss, “Anatomy of a lightning ball,” Sci. News, 161, 87 (2002).

    Google Scholar 

  92. N. V. Kolobkov, Thunderstorms and Squalls [in Russian], GITTL, Moscow/Leningrad (1951), p. 57.

    Google Scholar 

  93. H. Haken, Synergetics, Springer, Berlin (1978).

    Google Scholar 

  94. I. Prigogine, From Being to Becoming: Time and Complexity in the Physical Sciences, W. H. Freeman & Co., San Francisco (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikitin, A.I. The Principles of Developing the Ball Lightning Theory. Journal of Russian Laser Research 25, 169–191 (2004). https://doi.org/10.1023/B:JORR.0000018985.64212.f1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JORR.0000018985.64212.f1

Navigation