Skip to main content
Log in

Geostatistics and GIS: Tools for Characterizing Environmental Contamination

  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Geostatistics is a set of statistical techniques used in the analysis of georeferenced data that can be applied to environmental contamination and remediation studies. In this study, the 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) contamination at a Superfund site in western Maryland is evaluated. Concern about the site and its future clean up has triggered interest within the community because residential development surrounds the area. Spatial statistical methods, of which geostatistics is a subset, are becoming increasingly popular, in part due to the availability of geographic information system (GIS) software in a variety of application packages. In this article, the joint use of ArcGIS software and the R statistical computing environment are demonstrated as an approach for comprehensive geostatistical analyses. The spatial regression method, kriging, is used to provide predictions of DDE levels at unsampled locations both within the site and the surrounding areas where residential development is ongoing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lang, L., GIS for Health Organizations, 1st edn., Environmental Systems Research Institute, Redlands, CA, 2000.

    Google Scholar 

  2. Fitzgerald, E. F., Brix, K. A., Deres, D. A., Hwang, S. A., Bush, B., Lambert, G., and Tarbell, A., Polychlorinated biphenyl (PCB) and dichlorodiphenyl dichloroethylene (DDE) exposure among Native American men from contaminated Great Lakes fish and wildlife. Toxicol. Ind. Health 12:361–368, 1996.

    Google Scholar 

  3. Shone, S. M., Ferrao, P. N., Lesser, C. R., Norris, D. E., and Glass, G. E., Analysis of mosquito vector species abundances in Maryland using geographic information systems. Ann. N. Y. Acad. Sci. 951:364–368, 2001.

    Google Scholar 

  4. McKee, K. T., Jr., Shield, T. M., Jenkins, P. R., Zenilman, J. M., and Glass, G. E., Application of a geographic information system to the tracking and control of an outbreak of shigellosis. Clin. Infect. Dis. 31:728–733, 2000.

    Google Scholar 

  5. Latkin, C., Glass, G. E., and Duncan, T., Using geographic information systems to assess spatial patterns of drug use, selection bias and attrition among a sample of injection drug users. Drug Alcohol Depend. 50:167–175, 1998.

    Google Scholar 

  6. Glass, G. E., Amerasinghe, F. P., Morgan, J. M., III, and Scott, T. W., Predicting Ixodes scapularis abundance on white-tailed deer using geographic information systems. Am. J. Trop. Med. Hyg. 51:538–544, 1994.

    Google Scholar 

  7. Glass, G. E., Schwartz, B. S., Morgan, J. M.,III, Johnson, D. T., Noy, P. M., and Israel, E., Environmental risk factors for Lyme disease identified with geographic information systems. Am. J. Public Health 85:944–948, 1995.

    Google Scholar 

  8. Becker, K. M., Glass, G. E., Brathwaite, W., and Zenilman, J. M., Geographic epidemiology of gonorrhea in Baltimore, Maryland, using a geographic information system. Am. J. Epidemiol. 147:709–716, 1998.

    Google Scholar 

  9. Agency for Toxic Substances and Disease Registry, ToxFAQs for DDT, DDE, and DDD. Retrieved September 1, 1995, from http://www.atsdr.cdc.gov/tfacts35.html

  10. Longnecker, M. P., Rogan, W. J., and Lucier, G., The human health effects of DDT (dichlorodiphenyltrichloroethane) and PCBS (polychlorinated biphenyls) and an overview of organochlorines in public health. Annu. Rev. Public Health 18:211–244, 1997.

    Google Scholar 

  11. Maryland Department of the Environment, Sampling Proposal for Expanded Site Inspection of the Central Chemical-Hagerstown Site, MD-302, March 1, 1993.

  12. Roy F. Weston, Inc., Site Assessment Technical Assistance Team, Trip report SAT0300595, 1997.

  13. Maryland Department of the Environment, Expanded Site Inspection of the Central Chemical-Hagerstown Site, MD 302.1, June 1, 1994.

  14. Maryland Department of the Environment, Expanded Site Inspection Sampling Plan of the Central Chemical-Hagerstown Site, MD 302, July 1, 1995.

  15. Maryland Department of the Environment, Expanded Site Inspection of the Central Chemical-Hagerstown Site, MD 302.2, January 1, 1996.

  16. Booz Allen Hamilton, Inc., RCRA, Superfund, and EPCRA Hotline Training Module, EPA540-R-98-029, 1998.

  17. United States Environmental Protection Agency, Final National Priorities List Sites. Retrieved October 21, 2003, from http://www.epa.gov/superfund/sites/query/queryhtm/nplfin1.htm

  18. Isaaks, E. H., and Srivastava, R. M., An Introduction to Applied Geostatistics, Oxford University Press, New York, 1989.

    Google Scholar 

  19. Cressie, N., Geostatistics. Am. Stat. 43:197–202, 1989.

    Google Scholar 

  20. Cressie, N., Statistics for Spatial Data, Wiley, New York, 1991.

    Google Scholar 

  21. Hwang, S. A., Fitzgerald, E. F., Cayo, M., Yang, B. Z., Tarbell, A., and Jacobs, A., Assessing environmental exposure to PCBs among Mohawks at Akwesasne through the use of geostatistical methods. Environ. Res. 80:S189–S199, 1999.

    Google Scholar 

  22. Preat, B., Application of geostatistical methods for estimation of the dispersion variance of occupational exposures. Am. Ind. Hyg. Assoc. J. 48:877–884, 1987.

    Google Scholar 

  23. Juang, K. W., Lee, D. Y., and Ellsworth, T. R., Using rank-order geostatistics for spatial interpolation of highly skewed data in a heavy-metal contaminated site. J. Environ. Qual. 30:894–903, 2001.

    Google Scholar 

  24. Saito, H., and Goovaerts, P., Selective remediation of contaminated sites using a two-level multiphase strategy and geostatistics. Environ. Sci. Technol. 37:1912–1918, 2003.

    Google Scholar 

  25. Thayer, W. C., Griffith, D. A., Goodrum, P. E., Diamond, G. L., and Hassett, J. M., Application of geostatistics to risk assessment. Risk Anal. 23:945–960, 2003.

    Google Scholar 

  26. Cressie, N., Fitting variogram models by weighted least squares. J. Int. Assoc. Math. Geol. 17:563–586, 1985.

    Google Scholar 

  27. Diggle, P. J., Tawn, J. A., and Moyeed, R. A., Model-based geostatistics. Appl. Stat. 47:299–326, 1998.

    Google Scholar 

  28. Curriero, F. C., and Lele, S., A composite Likelihood approach to semivariogram estimation. J. Agric. Biol. Environ. Stat. 4:9–28, 1999.

    Google Scholar 

  29. Myers, D. E., Begovich, C. L., Butz, T. R., and Kane, V. E., Variogram Models for regional groundwater geochemical data. Math. Geol. 14:629–644, 1982.

    Google Scholar 

  30. Webster, R., and Oliver, M. A., Sample adequately to estimate variograms of soil properties. J. Soil Sci. 43:177–192, 1992.

    Google Scholar 

  31. Johnston, K., Ver Hoef, J. M., Krivoruchko, K., and Lucas, N., Using ArcGIS Geostatistical Analyst, Environmental Systems Research Institute, Redlands, CA, 2001.

    Google Scholar 

  32. Ihaka, R., and Gentleman, R. R., A language for data analysis and graphics. J. Comput. Graph. Stat. 5:299–314, 1996.

    Google Scholar 

  33. Deutsch, C. V., and Journel, A. G., GSLIB Geostatistical Software Library and User's Guide, Oxford University Press, New York, 1992.

    Google Scholar 

  34. Mathsoft, S+SPATIALSTATS User's Manual, Version 1.0 edn., Mathsoft, Inc., Seatle, 1996.

  35. R Development Core Team, The R Project for Statistical Computing. Retrieved October 24, 2003, from http://www.r-project.org/

  36. Holoubek, I., Kocan, A., Holoubkova, I., Hilscherova, K., Kohoutek, J., Falandysz, J., and Roots, O., Persistent, Bioaccumulative and Toxic Chemicals in Central and Eastern European Countries, State-of-the-art Report, TOCOEN report no. 150a, RECETOX-TOCOEN & Associates, Brno, Czech Republic, 2000.

    Google Scholar 

  37. Ormsby, T., Napoleon, E., Burke, R., Groessl, C., and Feaster, L., Getting to Know ArcGIS Desktop, Environmental Systems Research Institute, Redlands, CA, 2001.

    Google Scholar 

  38. Ribeiro, P. J.,Jr., and Diggle, P. J., geoR:A package for geostatistical analysis. R-NEWS, 1, 2, 2001. Available from http://cran.r-project.org/doc/Rnews

  39. Ribeiro, P. J.,Jr., and Diggle, P. J., geoR: A Package for Geostatistical Data Analysis Using the R Software. Available September 30, 2003, from http://www.est.ufpr.br/geoR/

  40. Haas, T. C., Lognormal and moving window methods of estimating acid deposition. J. Am. Stat. Assoc. 85:950–963, 1990.

    Google Scholar 

  41. Armstrong, M., and Boufassa, A., Comparing the robustness of ordinary kriging and lognormal kriging: Outlier resistance. Math. Geol. 20:447–457, 1988.

    Google Scholar 

  42. Dowd, P. A., Lognormal kriging—The general case. J. Int. Assoc. Math. Geol. 14:475–499, 1982.

    Google Scholar 

  43. United States Environmental Protection Agency, Region 9, Soil Screening Users Guide Technical Document, EPA/540/R-95/128, Appendix A, July 1, 1996.

  44. United States Environmental Protection Agency, Region 3. Risk-Based Concentration Table, October, 15, 2003.

  45. Christensen, O. F., Diggle, P. J., and Ribeiro, P. J., Jr., Analysing positive-valued spatial data: The transformed Gaussian model. In Monestiez, P., Allard, D., and Froidevaux, R. (eds.), GeoENVIII—Geostatistics for Environmental Applications, vol. 11, Kluwer, New York, pp. 287–298, 2001.

  46. Diggle, P. J., and Ribeiro, P. J.,Jr., Bayesian inference in Gaussian model-based geostatistics. Geogr. Environ. Model. 2001.

  47. Christensen, O. F., and Ribeiro, P. J.,Jr., geoRglm: Software for generalised linear spatial models using R (0.7-5), September 3, 2003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank C. Curriero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henshaw, S.L., Curriero, F.C., Shields, T.M. et al. Geostatistics and GIS: Tools for Characterizing Environmental Contamination. Journal of Medical Systems 28, 335–348 (2004). https://doi.org/10.1023/B:JOMS.0000032849.42310.4e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMS.0000032849.42310.4e

Navigation