Journal of Mammalian Evolution

, Volume 10, Issue 3, pp 249–276 | Cite as

Phylogeny and Evolutionary History of the Ground Squirrels (Rodentia: Marmotinae)

  • Richard G. Harrison
  • Steven M. Bogdanowicz
  • Robert S. Hoffmann
  • Eric Yensen
  • Paul W. Sherman


Although ground squirrels (Spermophilus) and prairie dogs (Cynomys) are among the most intensively studied groups of mammals with respect to their ecology and behavior, a well-resolved phylogeny has not been available to provide a framework for comparative and historical analyses. We used complete mitochondrial cytochrome b sequences to construct a phylogeny that includes all 43 currently recognized species in the two genera, as well as representatives of two closely related genera (Marmota and Ammospermophilus). In addition, divergence times for ground squirrel lineages were estimated using Bayesian techniques that do not assume a molecular clock. All methods of phylogenetic analysis recovered the same major clades, and showed the genus Spermophilus to be paraphyletic with respect to both Marmota and Cynomys. Not only is the phylogeny at odds with previous hypotheses of ground squirrel relationships, but it suggests that convergence in morphology has been a common theme in ground squirrel evolution. A well-supported basal clade, including Ammospermophilus and two species in the subgenus Otospermophilus, diverged from all other ground squirrels an estimated 17.5 million years ago. Between 10 and 14 million years ago, a relatively rapid diversification gave rise to lineages leading to marmots and to several distinct groups of ground squirrels. The Eurasian ground squirrels diverged from their North American relatives during this period, far earlier than previously hypothesized. This period of diversification corresponded to warming climate and spread of grasslands in western North America and Eurasia. Close geographic proximity of related forms suggests that most species evolved in or near their current ranges.

ground squirrels prairie dogs phylogeny mtDNA cytochrome b molecular clock 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alroy, J. (1994). Appearance event ordination: A new biochronologic method. Paleobiology 20: 191–207.Google Scholar
  2. Alroy, J. (1996). Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeog. Palaeoclim. Paleoecol. 127: 285–311.Google Scholar
  3. Alroy, J. (2000a). North American fossil mammal systematics database. Available at∼alroy/nafmsd.htmlGoogle Scholar
  4. Alroy, J. (2000b). North American mammalian paleofaunal database. Available at∼alroy/nampfd.htmlGoogle Scholar
  5. Alroy, J. (2000c). New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26: 707–733.Google Scholar
  6. Anderson, S., Bankier, A. T., Barrell, B. G., Debruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. Nature 290: 457–465.Google Scholar
  7. Armitage, K. B. (1981). Sociality as a life history tactic of ground squirrels. Oecologia 48: 36–49.Google Scholar
  8. Barash, D. P. (1989). Marmots. Social Behavior and Ecology, Stanford University Press, Stanford, CA.Google Scholar
  9. Black, C. C. (1963). A review of the North American Tertiary Sciuridae. Bull. Mus. Comp. Zool., Harvard Univ. 130: 109–248.Google Scholar
  10. Black, C. C. (1972). Holarctic evolution and dispersal of squirrels (Rodentia:Sciuridae). Evol. Biol. 6: 305–322.Google Scholar
  11. Blumstein, D. T., and Armitage, K. B. (1997). Does sociality drive the evolution of communicative complexity? A comparative test with ground-dwelling sciurid alarm calls. Am. Nat. 150: 179–200.Google Scholar
  12. Blumstein, D. T., and Armitage, K. B. (1998). Life history consequences and social complexity: A comparative study of ground-dwelling sciurids. Behav. Ecol. 9: 8–19.Google Scholar
  13. Blumstein, D. T., and Armitage, K. B. (1999). Cooperative breeding in marmots. Oikos 84: 369–382.Google Scholar
  14. Boyer, B. B., and Barnes, B. M. (1999). Molecular and metabolic aspects of mammalian hibernation. BioScience 49: 713–724.Google Scholar
  15. Bryant, M. D. (1945). Phylogeny of Nearctic Sciuridae. Am. Mid. Nat. 33: 257–390.Google Scholar
  16. Caccone, A., Milinkovitch, M. C., Sbordoni, V., and Powell, J. R. (1997). Mitochondrial DNA rates and biogeography in European newts (Genus Euproctus). Syst. Biol. 46: 126–144.Google Scholar
  17. Corbet, G. B. (1978). The Mammals of the Palaearctic Region: A Taxonomic Review, Cornell University Press, Ithaca, NY.Google Scholar
  18. Cothran, E. G. (1983). Morphological relationships of the hybridizing ground squirrels Spermophilus mexicanus and S. tridecemlineatus. J. Mammal. 64: 591–602.Google Scholar
  19. Cothran, E. G., and Honeycutt, R. L. (1984). Chromosomal differentiation of hybridizing ground squirrels (Spermophilus mexicanus and S. tridecemlineatus). J. Mammal. 65: 118–122.Google Scholar
  20. Cothran, E. G., Zimmerman, E. G., and Nadler, C. F. (1977). Genic differentiation and evolution in the ground squirrel subgenus Ictidomys. J. Mammal. 58: 610–622.Google Scholar
  21. Dewalt, T. S., Sudman, P. D., Hafner, M. S., and Davis, S. K. (1993). Phylogenetic relationships of pocket gophers (Cratogeomys and Pappogeomys) based on mitochondrial DNA cytochrome b sequences. Mol. Phylogenet. Evol. 2: 193–204.Google Scholar
  22. Dobson, F. S. (1984). Environmental influences on sciurid mating systems. In: The Biology of Ground-Dwelling Squirrels, J. O. Murie and G. R. Michener, eds., pp. 229–249, University of Nebraska Press, Lincoln, NE.Google Scholar
  23. Dobson, F. S. (1985). The use of phylogeny in behavior and ecology. Evolution 39: 1384–1388.Google Scholar
  24. Douady, C. J., Delsuc, F., Boucher, Y., Doolittle, W. F., and Douzery, E. J. P. (2003). Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol. Biol. Evol. 20: 248–254.Google Scholar
  25. Durrant, S. D., and Hansen, R. M. (1954). Distribution patterns and phylogeny of some western ground squirrels. Syst. Zool. 3: 82–85.Google Scholar
  26. Elliot, L. (1978). Social behavior and foraging ecology of the Eastern Chipmunk (Tamias striatus) in the Adirondack Mountains. Smithson. Contrib. Zool. No. 265: 1–107.Google Scholar
  27. Felsenstein, J. (1989). PHYLIP—Phylogeny inference package (Version 3.2). Cladistics 5: 164–166.Google Scholar
  28. Giboulet, O., Cheret, P., Ramousse, R., and Catzeflis, F. (1997). DNA–DNA hybridization evidence for the recent origin of marmots and ground squirrels (Rodentia:Sciuridae). J. Mammal. Evol. 4: 271–284.Google Scholar
  29. Giterman, R. A., Sher, A., and Matthews, J. V., Jr. (1982). Comparison of the development of the steppe–tundra environments in west and east Beringia. In: Paleoecology of Beringia, D. M. Hopkins, J. V. MatthewsJr., C. E. Schweger, and S. B. Young, eds., pp. 43–73, Academic Press, New York.Google Scholar
  30. Goodwin, H. T. (1995). Pliocene–Pleistocene biogeographic history of prairie dogs, genus Cynomys (Sciuridae). J. Mammal. 76: 100–122.Google Scholar
  31. Graham, A. (1999). Late Cretaceous and Cenozoic History of North American Vegetation. Oxford University Press, New York.Google Scholar
  32. Gromov, I. M., and Erbaeva, M. A. (1995). Mlekopitayushchie Fauny Rossii I Sopredel'nykh Territorii [Mammal Fauna of Russia and Adjacent Territories], Zoological Institute of the Russian Academy of Sciences, Saint Petersburg.Google Scholar
  33. Gromov, I. M., Bibikov, D. I., Kalabukhov, N. I., and Meier, M. N. (1965). Fauna SSSR. Mlekopitayushchie [Mammals], 3(2). Nazemnye belichi (Marmotinae) [Ground squirrels...]. Nauka, Moscow–Leningrad.Google Scholar
  34. Hafner, D. J. (1984). Evolutionary relationships of the Nearctic Sciuridae. In: The Biology of Ground-Dwelling Squirrels, J. O. Murie, and G. R. Michener, eds., pp. 13–23, University of Nebraska Press, Lincoln, NE.Google Scholar
  35. Hall, E. R. (1981). The Mammals of North America, 2nd edn., Wiley, New York.Google Scholar
  36. Harrison, R. G. (1998). Linking evolutionary pattern and process: the relevance of species concepts for the study of speciation. In: Endless Forms, D. J. Howard and S. H. Berlocher, eds, pp. 19–31, Oxford University Press, New York.Google Scholar
  37. Hershkovitz, P. (1949). Status of names credited to Oken, 1816. J. Mammal. 30: 289–301.Google Scholar
  38. Hoffmann, R. S., and Jones, J. K., Jr. (1970). Influence of late glacial and postglacial events on the distribution of recent mammals on the northern Great Plains. In: Pleistocene and Recent Environments of the Central Great Plains, W. DortJr. and J. K. JonesJr., eds., pp. 355–394, University of Kansas Press, Lawrence, KS.Google Scholar
  39. Hoffmann, R. S., Anderson, C. G., Thorington, R. W. Jr., and Heaney, L. R. (1993). Family Sciuridae. In: Mammal Species of the World, D. E. Wilson and D. M. Reeder, eds., pp. 419–465, Smithsonian Institution Press, Washington, DC.Google Scholar
  40. Holmes, W. G. (2001). The development and function of nepotism. In: Developmental Psychobiology, Vol. 13, E. Blas, ed., pp. 281–316, Plenum, New York.Google Scholar
  41. Hoogland, J. L. (1995). The Black-Tailed Prairie Dog, University of Chicago Press, Chicago.Google Scholar
  42. Hopkins, D. M. (1967). The Bering Land Bridge. Stanford University Press, Stanford, CA.Google Scholar
  43. Howell, A. H. (1938). Revision of the North American ground squirrels, with a classification of the North American Sciuridae. N. Am. Fauna 56: 1–256.Google Scholar
  44. Huelsenbeck, J. P., and Ronquist, F. (2001). MrBayes: Bayesian Inference of Phylogeny, Department of Biology, University of Rochester, Rochester, NY.Google Scholar
  45. Huelsenbeck, J. P., Ronquist, F., Nielsen, R., and Bollback, J. P. (2001). Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310–2314.Google Scholar
  46. Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32: 128–144.Google Scholar
  47. Kishino, H., Thorne, J. L., and Bruno, W. J. (2001). Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol. Biol. Evol. 18: 352–361.Google Scholar
  48. Korth, W. W. (1996). A new genus of prairie dog (Sciuridae, Rodentia) from the Miocene (Barstovian of Montana and Clarendonian of Nebraska) and the classification of Nearctic ground squirrels (Marmotini). Trans. Nebraska Acad. Sci. 23: 109–113.Google Scholar
  49. Lacey, E. A., Wieczorek, J. R., and Tucker, P. K. (1997). Male mating behavior and patterns of sperm precedence in Arctic ground squirrels. Anim. Behav. 53: 767–779.Google Scholar
  50. Lyapunova, E. A., and Vorontsov, N. N. (1970). Chromosomes and some issues of the evolution of the ground squirrel genus Citellus (Rodentia, Sciuridae). Experientia 26: 1033–1038.Google Scholar
  51. MacNeil, D., and Strobeck, C. (1987). Evolutionary relationships among colonies of Columbian ground squirrels as shown by mitochondrial DNA. Evolution 41: 873–881.Google Scholar
  52. Martin, A. P., and Palumbi, S. R. (1993). Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl. Acad. Sci. U.S.A. 90: 4087–4091.Google Scholar
  53. Martin, A. P., Naylor, G. J. P., and Palumbi, S. R. (1992). Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature 357: 153–155.Google Scholar
  54. McKenna, M. C., and Bell, S. K. (1997). Classification of Mammals Above the Species Level, Columbia University Press, New York.Google Scholar
  55. Mercer, J. M., and Roth, V. L. (2003). The effects of Cenozoic global change on squirrel phylogeny. Science 299: 1568–1572.Google Scholar
  56. Michener, G. R. (1983). Kin identification, matriarchies, and the evolution of sociality in ground-dwelling sciurids. In: Recent Advances in the Study of Mammalian Behavior, J. F. Eisenberg and D. K. Kleiman, eds., pp. 528–572, Special publication No. 7, The American Society of Mammalogists.Google Scholar
  57. Michener, G. R. (1984). Age, sex, and species differences in the annual cycles of ground-dwelling sciurids: implications for sociality. In: The Biology of Ground-Dwelling Squirrels, J. O. Murie, and G. R. Michener, eds., pp 81–107, University of Nebraska Press, Lincoln, NE.Google Scholar
  58. Murie, J. O., and Michener, G. R. (1984). The Biology of Ground-Dwelling Squirrels, University of Nebraska Press, Lincoln, NE.Google Scholar
  59. Nadler, C. F. (1966). Chromosomes and systematics of American ground squirrels of the subgenus Spermophilus. J. Mammal. 47: 579–596.Google Scholar
  60. Nadler, C. F., and Hoffmann, R. S. (1977). Patterns of evolution and migration in the arctic ground squirrel, Spermophilus parryii (Richardson). Canad. J. Zool. 55: 748–758.Google Scholar
  61. Nadler, C. F., Hoffmann, R. S., and Greer, K. (1971a). Chromosomal divergence during evolution of ground squirrel populations (Rodentia: Spermophilus). Syst. Zool. 20: 298–305.Google Scholar
  62. Nadler, C. F., Hoffmann, R. S., and Pizzimenti, J. J. (1971b). Chromosomes and serum proteins of prairie dogs, and a model of Cynomys evolution. J. Mammal. 52: 545–555.Google Scholar
  63. Nadler, C. F., Hoffmann, R. S., Vorontsov, N. N., Koeppl, J. W., Deutsch, L., and Sukernik, R. I. (1982). Evolution in ground squirrels. II. Biochemical comparisons in Holarctic populations of Spermophilus. Z. Säugetierkunde, 47: 198–215.Google Scholar
  64. Nadler, C. F., Lyapunova, E. I., Hoffmann, R. S., Vorontsov, N. N., Shaitorova, L. L., and Borisov, Y. M. (1984). Chromosomal evolution in Holarctic ground squirrels. II. Giemsa band homologies of chromosomes, and the tempo of evolution. Z. Säugetierkunde 49: 78–90.Google Scholar
  65. Nevo, E. (1999). Mosaic Evolution of Subterranean Mammals: Regression, Progression and Global Convergence, Oxford University Press, Oxford.Google Scholar
  66. Ognev, S. I. (1947). Zveri SSSR i Prilezhashchikh stran. Zveri vostochnoi Evropi i severnoi Azii. Tom V. Gryzuny [Mammals of the U.S.S.R. and Adjacent Countries. Mammals of Eastern Europe and Northern Asia. Vol. V. Rodents], Academy of Sciences of the U.S.S.R., Moscow–Leningrad.Google Scholar
  67. Pavlinov, I. Y., Yakhontov, E. L., and Agadzhanyan, A. K. (1995). Mlekopitayushchie Evrazii. I. Rodentia. Sistematiko-geograficheskii spravochnik [Mammals of Eurasia: Systematic Geographic Reference Book], Moscow University Press, Moscow.Google Scholar
  68. Pielou, E. C. (1991). After the Ice Age, University of Chicago Press, Chicago.Google Scholar
  69. Pizzimenti, J. J. (1975). Evolution of the prairie dog genus Cynomys. Occas. Pap. Mus. Nat. Hist., Univ. Kansas 39: 1–73.Google Scholar
  70. Qui, Z.-D. (1991). The Neogene mammalian faunas of Ertemte and Harr Obo in Inner Mongolia (Nei Mongol), China. 8. Sciuridae (Rodentia). Senkenbergiana Lethaea, 71: 223–255.Google Scholar
  71. Rand, D. M. (1994). Thermal habit, metabolic rate, and the evolution of mitochondrial DNA. Trends Ecol. Evol. 9: 125–131.Google Scholar
  72. Repenning, C. A. (1967). Palearctic–Nearctic mammalian dispersal in the late Cenozoic. In: The Bering Land Bridge, D. M. Hopkins, ed., pp 288–311, Stanford University Press, Stanford, CA.Google Scholar
  73. Savage, D. E., and Russell, D. E. (1983). Mammalian Paleofaunas of the World, Addison-Wesley, Reading, MA.Google Scholar
  74. Schwagmeyer, P. L. (1990). Ground squirrel reproductive behavior and mating competition: A comparative perspective. In: Contemporary Issues in Comparative Psychology, D. A. Dewsbury, ed., pp 175–196, Sinauer Associates, Sunderland, MA.Google Scholar
  75. Schwartz, O. A., Armitage, K. B., and van Vuren, D. (1998). A 32-year demography of yellow-bellied marmots (Marmota flaviventris). J. Zool. (London) 246: 337–346.Google Scholar
  76. Sherman, P. W. (1977). Nepotism and the evolution of alarm calls. Science, 197: 1246–1253.Google Scholar
  77. Sherman, P. W., and Morton, M. L. (1984). Demography of Belding's ground squirrels. Ecology 65: 1617–1628.Google Scholar
  78. Sherman, P. W., and Runge, M. C. (2002). Demography of a population collapse: The northern Idaho ground squirrel (Spermophilus brunneus brunneus). Ecology 83: 2816–2831.Google Scholar
  79. Smith, M. F. (1998). Phylogenetic relationships and geographic structure in pocket gophers in the genus Thomomys. Mol. Phylogenet. Evol. 9: 1–14.Google Scholar
  80. Smith, M. F., and Patton, J. L. (1993). The diversification of South American murid rodents: evidence from mitochondrial DNA sequence data for the akodontine tribe. Biol. J. Linn. Soc. 50: 149–177.Google Scholar
  81. Spradling, T. A., Hafner, M. S., and Demastes, J. W. (2001). Differences in rate of cytochrome b evolution among species of rodents. J. Mammal. 82: 65–80.Google Scholar
  82. Stangl, F. B., Jr., and Grimes, J. V. (1987). Phylogenetic implications of comparative pelage morphology in Aplodontidae and the Nearctic Sciuridae, with observations on seasonal pelage variation. Occas. Papers, The Museum, Texas Tech Univ. 112: 1–21.Google Scholar
  83. Stein, B. R. (2000). Morphology of subterranean rodents. In: Life Underground, E. A. Lacey, J. L. Patton, and G. N. Cameron, eds., pp 19–61, University of Chicago Press, Chicago.Google Scholar
  84. Steppan, S. J., Akhverdyan, M. R., Lyapunova, E. A., Fraser, D. G., Vorontsov, N. N., Hoffmann, R. S., and Braun, M. J. (1999). Molecular phylogeny of the marmots (Rodentia:Sciuridae): Tests of evolutionary and biogeographic hypotheses. Syst. Biol. 48: 715–734.Google Scholar
  85. Suzuki, Y., Glazko-Galina, V., and Nei, M. (2002). Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proc. Natl. Acad. Sci. U.S.A. 99: 16138–16143.Google Scholar
  86. Swofford, D. L. (1998). PAUP*. Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4.0b, Sinauer Associates, Sunderland, MA.Google Scholar
  87. Tan, A. M., and Wake, D. B. (1995). MtDNA phylogeography of the California newt, Taricha torosa (Caudata, Salamandridae). Mol. Phylogenet. Evol. 4: 383–394.Google Scholar
  88. Thomas, W. K., and Martin, S. L. (1993). A recent origin of marmots. Mol. Phylogenet. Evol. 2: 330–336.Google Scholar
  89. Thorne, J. L., and Kishino, H. (2002). Divergence time and evolutionary rate estimation with multilocus data. Syst. Biol. 51: 689–702.Google Scholar
  90. Thorne, J. L., Kishino, H., and Painter, I. S. (1998). Estimating the rate of evolution of the rate of molecular evolution. Mol. Biol. Evol. 15: 1647–1657.Google Scholar
  91. van Horne, B., Olson, G. S., Schooley, R. L., Corn, J. G., and Burnham, K. P. (1997). Effects of drought and prolonged winter on Townsend's ground squirrel demography in shrubsteppe habitats. Ecol. Mono. 67: 295–315.Google Scholar
  92. Vorontsov, N. N., and Lyapunova, E. A. (1970). Khromosomnie chisla i vidoobraznovanie u nazemnikh belich'ikh (Sciuridae, Xerinae et Marmotinae) Golarktiki [Chromosome numbers and species formation in ground squirrels of the Holarctic]. Byull. Mosk. Ob-va Ispyt. Prir. Otd. Biol. 75: 112–126.Google Scholar
  93. Vorontsov, N. N., and Lyapunova, E. A. (1972). Tsitogeneticheskie dokasatel'stya sushchestvovaniya Zakavkaska-Sonorskikh dis'unktsi arealov nekotorykh mlekopitayushchik [Cytogenetical evidence for Transcaucasian-Sonoran disjunction in ranges of certain mammals]. Zool. Zhurnal 51: 1697–1704.Google Scholar
  94. Vorontsov, N. N., and Lyapunova, E. A. (1984). Genetics and problems of trans-Beringian connections of Holarctic mammals. In: Beringia in the Cenozoic Era, V. L. Kontrimavichus, ed., pp. 441–463, Oxonian Press, New Delhi, India.Google Scholar
  95. Wilson, D. E., and Ruff, S. (eds.). (1999). The Smithsonian Book of North American Mammals, Smithsonian Institution Press, Washington, DC.Google Scholar
  96. Wolfe, J. A., and Leopold, E. B. (1967). Neogene and early Quarternary vegetation of northwestern North America and northeastern Asia. In: The Bering Land Bridge, D. M. Hopkins, ed., pp. 193–206, Stanford University Press, Stanford, CA.Google Scholar
  97. Yensen, E., and Sherman, P. W. (2003). Ground squirrels: Spermophilus spp. and Ammospermophilus spp. In: Wild Mammals of North America, 2nd edn., G. Feldhamer, B. Thompson, and J. Chapman, eds., pp. 211–231, Johns Hopkins University Press, Baltimore.Google Scholar
  98. Yensen, E., and Valdés-Alarcón, M. (1999). Family Sciuridae. In: Mamíferos del Noroeste de Mexico, S. T. Alvarez-Castañeda and J. L. Patton, eds., pp. 239–320, Centro de Investigaciones Biologicas del Noroeste, S.C., La Paz, Baja California Sur, Mexico.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Richard G. Harrison
    • 1
  • Steven M. Bogdanowicz
    • 1
  • Robert S. Hoffmann
    • 2
  • Eric Yensen
    • 3
  • Paul W. Sherman
    • 4
  1. 1.Department of Ecology and Evolutionary Biology, Corson HallCornell UniversityIthacaUSA
  2. 2.Department of Vertebrate Zoology, Division of MammalsSmithsonian InstitutionWashingtonUSA
  3. 3.Biology DepartmentAlbertson CollegeCaldwellUSA
  4. 4.Department of Neurobiology and Behavior, Mudd HallCornell UniversityIthacaUSA

Personalised recommendations