Skip to main content
Log in

On the Nonlinear Dynamic State Reconstruction Problem for Chemical/Biochemical Reaction Systems in the Presence of Model Uncertainty

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A new approach to the unmeasurable state reconstruction problem for nonlinear chemical reaction systems in the presence of model uncertainty is proposed. In particular, a new robust nonlinear state estimation method is developed that explicitly uses all the available useful information associated with: (i) a dynamic model inevitably characterized by uncertainty, and (ii) a set of sensor measurements in order to accurately reconstruct other key quantities/variables that cannot be measured on-line due to physical and/or technical limitations. The problem of interest is conveniently formulated and addressed within the context of singular partial differential equations (PDE) theory, leading to a nonlinear state estimator that possesses a state-dependent gain computed through the solution of a system of first-order singular PDEs. A set of necessary and sufficient conditions is presented that ensure the existence and uniqueness of a locally analytic solution to the aforementioned system of singular PDEs, and a series solution method that can be easily implemented via a MAPLE code is developed. Under these conditions, the convergence of the estimation error or the mismatch between the actual unmeasurable states and their estimates is analyzed and characterized in the presence of model uncertainty. Finally, the performance of the proposed nonlinear etimator and its convergence properties are evaluated in an illustrative biochemical reaction system that exhibits nonlinear behavior coupled with parametric uncertainty, and the estimation objective is to accurately reconstruct the unmeasurable substrate concentration using the available cell mass concentration measurements and the model of the system under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.R. Epstein and J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics (Oxford University Press, New York, 1998).

    Google Scholar 

  2. R.I. Masel, Chemical Kinetics and Catalysis (Wiley-Interscience, New York, 2001).

    Google Scholar 

  3. L.D. Schmidt, The Engineering of Chemical Reactions (Oxford University Press, New York, 1998).

    Google Scholar 

  4. G. Bastin and D. Dochain, Online Estimation and Adaptive Control of Bioreactors (Elsevier, New York, 1990).

    Google Scholar 

  5. P.D. Christofides, Nonlinear and Robust Control of PDE Systems (Birkhauser, Boston, 2001).

    Google Scholar 

  6. G.F. Froment and K.B. Bischoff, Chemical Reactor Analysis and Design (Wiley, New York, 1990)

    Google Scholar 

  7. J.E. Bailey and D.F. Ollis, Biochemical Engineering Fundamentals (McGraw-Hill, New York, 1986).

    Google Scholar 

  8. S.Y. Shvartsman and I.G. Kevrekidis, AICHE J. 44 (1998) 1579.

    Article  Google Scholar 

  9. H.G. Kaper and T.J. Kaper, Physica D 165 (2002) 66.

    Google Scholar 

  10. M.R. Roussel, J. Math. Chem. 21 (1997) 385.

    Article  Google Scholar 

  11. M.R. Roussel and S. J. Fraser, Chaos 11 (2001) 196.

    Article  PubMed  Google Scholar 

  12. F.J. Doyle III, J. Proc. Contr. 8 (1998) 339.

    Article  Google Scholar 

  13. M. Soroush, Comput. Chem. Eng. 23 (1998)229.

    Article  Google Scholar 

  14. C.T. Chen, Linear System Theory and Design (Holt, Rinehart and Winston, New York, 1984).

    Google Scholar 

  15. A. Isidori, Nonlinear Control Systems (Springer-Verlag, Berlin, 1999).

    Google Scholar 

  16. A. Gelb, Applied Optimal Estimation (MIT Press, Cambridge, MA, 1974).

    Google Scholar 

  17. D.G. Luenberger, IEEE Trans. Milit. Electr. 8 (1963) 74.

    Google Scholar 

  18. D. Bestle and M. Zeitz, Int. J. Control. 38 (1983) 419.

    Google Scholar 

  19. A.J. Krener and A. Isidori, Syst. Contr. Lett. 3 (1983) 47.

    Article  Google Scholar 

  20. A.J. Krener and W. Respondek, SIAM J. Contr. Optim. 23 (1985) 197.

    Google Scholar 

  21. A. Armaou and P.D. Christofides, Physica D 137 (2000) 49.

    Google Scholar 

  22. A. Astolfi and L. Praly, in: Proceedings of the 42nd IEEE CDC, Maui, Hawaii (2003) p. 1562.

  23. G. Ciccarela, M. Dalla Mora and A. Germani, Int. J. Contr. 57 (1993) 537.

    Google Scholar 

  24. D. Dochain, M. Perrier and B.E. Ydstie, Chem. Eng. Sci. 47 (1992) 4167.

    Article  Google Scholar 

  25. J.P. Gauthier, H. Hammouri and S. Othman, IEEE Trans. Automat. Contr. 37 (1992) 875.

    Article  Google Scholar 

  26. M. Guay, IEEE Trans. Automat. Contr. 25 (2002) 277.

    Google Scholar 

  27. K. Judd, Physica D 183 (2003) 273.

    Google Scholar 

  28. A.J. Krener and M. Xiao, SIAM J. Contr. Optim. 41 (2002) 932.

    Article  Google Scholar 

  29. M. Soroush, Chem. Eng. Sci. 52 (1997) 387.

    Article  Google Scholar 

  30. J. Tsinias, Syst. Contr. Lett. 14 (1990) 411. 190 N. Kazantzis and R.A. Wright /On the nonlinear dynamic state reconstruction problem

    Article  Google Scholar 

  31. X. Yang and G. Ghen, Chaos Solit. Fract. 13 (2002) 1303.

    Article  Google Scholar 

  32. P.D. Christofides, Automatica 36 (2000) 45.

    Article  Google Scholar 

  33. N. Vora and P. Daoutidis, AICHE J. 47 (2001) 2320.

    Article  Google Scholar 

  34. A.N. Gorban and I.V. Karlin, Chem. Eng. Sci. 58 (2003) 4751.

    Article  Google Scholar 

  35. A.N. Gorban, I.V. Karlin, V.B. Zmievskii and S.V. Dymova, Physica A 275 (2000) 361.

    Google Scholar 

  36. J. Tóth, H. Rabitz and A.S. Tomlin, SIAM J. Appl. Math. 57 (1997) 1531.

    Article  Google Scholar 

  37. N. Kazantzis and C. Kravaris, Syst. Contr. Lett. 34 (1998) 241.

    Article  Google Scholar 

  38. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II (Wiley, New York, 1962).

    Google Scholar 

  39. N. Kazantzis, Phys. Lett. A 272 (2000) 257.

    Article  Google Scholar 

  40. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer-Verlag, New York, 1990).

    Google Scholar 

  41. G.R. Sell, Topological Dynamics and Differential Equations (Van Nostrand-Reinhold, London, 1971).

    Google Scholar 

  42. F.R. Gantmacher, The Theory of Matrices (Chelsea Publishing Company, New York, 1960).

    Google Scholar 

  43. H.K. Khalil, Nonlinear Systems (Prentice Hall, Englewood Cliffs, NJ, 1991).

    Google Scholar 

  44. P. Ducommun, A. Kadouri, U. Von Stockar and I. W. Marison, Biotech. Bioeng. 77 (2002) 316.

    Article  Google Scholar 

  45. V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations (Springer-Verlag, New York, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Kazantzis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazantzis, N., Wright, R.A. On the Nonlinear Dynamic State Reconstruction Problem for Chemical/Biochemical Reaction Systems in the Presence of Model Uncertainty. Journal of Mathematical Chemistry 36, 169–190 (2004). https://doi.org/10.1023/B:JOMC.0000038792.47836.ad

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMC.0000038792.47836.ad

Navigation