Skip to main content
Log in

Single Molecule Fluorescence Imaging and Its Application to the Study of DNA Condensation

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Single molecule fluorescence imaging incorporated with optical tweezers and a laminar flow cell has been used to monitor the kinetic process of DNA condensation induced by spermidine. It was found that at least two steps were involved in the condensation process of the hydrodynamically-stretched linear DNA; a lag period followed by a rapid collapse of DNA. The lag time increased with the flow speed and the collapse time remained short within the range of the flow speed studied. The effect of salt concentration on the condensation process was examined, and the results suggest that the longer lag time observed in the higher salt buffer probably results from the displacement of bound cations and rearrangement of spermidine on the DNA. The flow-speed dependence of the lag time suggests that a nucleation event at the free end of the DNA, i.e. formation of a loop, may play a vital role in the kinetic process of condensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Weiss (1999). Fluorescence spectroscopy of single biomolecules. Science 283, 1676-1683.

    PubMed  Google Scholar 

  2. A. Ishijima and T. Yanagida (2001). Single molecule nanobioscience. Trends Biochem. Sci. 26, 438-444.

    PubMed  Google Scholar 

  3. Y. Ishii, A. Ishijima, and T. Yanagida (2001). Single molecule nanomanipulation of biomolecules. Trends Biotechnol. 19, 211-216.

    PubMed  Google Scholar 

  4. A. E. Knight, C. Veigel, C. Chambers, and J. E. Molloy (2001). Analysis of single-molecule mechanical recordings: application to acto-myosin interactions. Prog. Biophys. Mol. Biol. 77, 45-72.

    PubMed  Google Scholar 

  5. C. G. Baumann, V. A. Bloomfield, S. B. Smith, C. Bustamante, M. D. Wang, and S. M. Block (2000). Stretching of single collapsed DNA molecules. Biophys. J. 78, 1965-1978.

    PubMed  Google Scholar 

  6. P. R. Bianco, L. R. Brewer, M. Corzett, R. Balhorn, Y. Yeh, S. C. Kowalczykowski, and R. J. Baskin (2001). Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409, 374-378.

    PubMed  Google Scholar 

  7. L. R. Brewer, M. Corzett, and R. Balhorn (1999). Protamine-induced condensation and decondensation of the same DNA molecule. Science 286, 120-123.

    PubMed  Google Scholar 

  8. V. A. Bloomfield (1996). DNA condensation. Curr. Opin. Struct. Biol. 6, 334-341.

    PubMed  Google Scholar 

  9. V. A. Bloomfield (1997). DNA condensation by multivalent cations. Biopolymers 44, 269-282.

    PubMed  Google Scholar 

  10. N. Makita and K. Yoshikawa (2002). Proton concentration (pH) switches the higher-order structure of DNA in the presence of spermine. Biophys. Chem. 99, 43-53.

    PubMed  Google Scholar 

  11. R. Golan, L. Pietrasanta, W. Hsieh, and H. G. Hansma (1999). DNA Toroids: stages in condensation. Biochemistry 38, 14069-14076.

    PubMed  Google Scholar 

  12. N. V. Hud and K. H. Downing (2001). Cryoelectron microscopy of lambda phage DNA condensates in vitreous ice: the fine structure of DNA toroids. Proc. Natl. Acad. Sci. U.S.A. 98, 14925-14930.

    PubMed  Google Scholar 

  13. V. Vijayanathan, T. Thomas, A. Shirahata, and T. J. Thomas (2001). DNA condensation by polyamines: A laser light scattering study of structural effects. Biochemistry 40, 13644-13651.

    PubMed  Google Scholar 

  14. L. D. Murphy and S. B. Zimmerman (1995). Condensation and cohesion of λ DNA in cell extracts and other media: Implications for the structure and function of DNA in prokaryotes. Biophy. Chem. 57, 71-92.

    Google Scholar 

  15. E. Raspaud, M. Olvera de la Cruz, J.-L. Sikorav, and F. Livolant (1998). Precipitation of DNA by polyamines: A polyelectrolyte behaviour. Biophys. J. 74, 381-393.

    PubMed  Google Scholar 

  16. B. Ladoux, J. Quivy, P. Doyle, O. du Roure, G. Almouzni, and J. Viovy (2000). Fast kinetics of chromatin assembly revealed by single-molecule videomicroscopy and scanning force microscopy. Proc. Natl. Acad. Sci. U.S.A. 97, 14251-14256.

    PubMed  Google Scholar 

  17. S. Matsuura, J. Komatsu, K. Hirano, H. Yasuda, K. Takashima, S. Katsura, and A. Mizuna (2001). Real-time observation of a single DNA digestion by λ exonuclease under a fluorescence microscope field. Nucleic Acids Res. 29, e79.

    PubMed  Google Scholar 

  18. R. W. Wilson and V. A. Bloomfield (1979). Counterion-induced condensation of deoxyribonucleic acid. A light-scattering study Biochemistry 18, 2192-2196.

    PubMed  Google Scholar 

  19. B. Ostrovsky and Y. Bar-Yam (1995). Motion of polymer ends in homopolymer and heteropolymer collapse. Biophys. J. 68, 1694-1698.

    PubMed  Google Scholar 

  20. C. Bustamante, T. W. Houseal, D. Beach, and M. F. Maestre (1990). Fluorescence microscopy of the dynamics of supercoiling, folding and condensation of bacterial chromosomes, induced by acridine orange. J. Biomol. Struct. Dyn. 8, 643-655.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. T. F. Dryden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, TJ., Theofanidou, E., Arlt, J. et al. Single Molecule Fluorescence Imaging and Its Application to the Study of DNA Condensation. Journal of Fluorescence 14, 65–69 (2004). https://doi.org/10.1023/B:JOFL.0000014661.89050.1b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOFL.0000014661.89050.1b

Navigation