Advertisement

Journal of Chemical Ecology

, Volume 30, Issue 6, pp 1225–1244 | Cite as

Chiral Synthesis of (Z)-3-cis-6,7-cis-9, 10-Diepoxyhenicosenes, Sex Pheromone Components of the Satin Moth, Leucoma salicis

  • Priyantha D. C. Wimalaratne
  • Keith N. Slessor
Article

Abstract

All four isomers of (Z)-3-cis-6,7-cis-9, 10-diepoxyhenicosenes, 14, have been synthesized using D-xylose as the chirally pure starting material. D-Xylose was first converted to 2-deoxy-4,5-O-isopropylidene-3-t-butyldi- methylsilyl-D-threopentose 11, via several steps of selective protection, dehydroxylation, and deprotection. Wittig coupling of 11 with nonyltriphenylphosphonium bromide followed by hydrogenation and acid catalyzed deprotection of hydroxyl groups yielded the chiral (2R,3R)-1,2,3-triol, 14, which was used as the precursor for the C-8 to C-21 unit of the (Z)-3-cis-6,7-cis-9,10-diepoxyhenico- senes. Selective tosylation of 14 followed by stereospecific cyclization yielded (2R,3R)-1,2-epoxytetradecan-3-ol, 16, which was then divergently converted to the t-butyldimethylsilyl ether 17 and tosylate 22, respectively. Establishment of the C-5 through C-7 unit of the target molecules was accomplished via regiospecific coupling of 17 with 1-t-butyldimethylsiloxy-2-propyne to form 18. Stepwise transformation of 18 via the formation of tosylate 19, desilylation, and stereospecific cyclization to form epoxy alcohol 20, followed by P2–Ni reduction yielded a key intermediate, allylic epoxy alcohol (Z)-2-(5S, 6R)-cis-5,6-epoxyheptadecen-1-ol, 21. Similarly, the coupling of 22 with 1-t-butyldimethylsiloxy-2-propyne yielded 23, which was stereospecifically cyclized to form 24. Desilylation and P2–Ni reduction of 24 gave the antipodal intermediate, (Z)-2-(5R, 6S)-cis-5,6-epoxyheptadecen-1-ol, 26. Asymmetric epoxidation of antipodes 21 and 26 with (L)- or (D)-diethyl tartrates resulted in the formation of diepoxy alcohols 27 and 29 from 21, and 33 and 31 from 26, respectively. Tosylation of these diepoxy alcohols followed by coupling with lithium dibutenyl cuprate yielded the four stereoisomers of (Z)-3-cis-6,7-cis-9, 10-diepoxyhenicosenes, 14. Analysis of the retention characteristics of these materials revealed that one or both of the S*,R*,S*,R* stereoisomers comprise the major pheromone component(s) of Leucoma salicis.

Chiral synthesis moth sex pheromone diepoxyhenicosene Satin moth Leucoma salicis leucomalure D-xylose Katsuki-Sharpless oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Alexakis, A., Cahiez, G., and Normant, J. F. 1979. Vinyl-copper derivatives; X. Alkylation of (Z)-dialkenylcuprates. Synthesis 826–830.Google Scholar
  2. Ando, T. 2003. Sex Pheromones of Moths. http://www.tuat.ac.jp/~antetsu/review/e-list.pdfGoogle Scholar
  3. Arn, H. 2000. The Pherolist. http://www-pherolist.slu.se/Google Scholar
  4. Bell, T. W. and Ciaccio, J. A. 1993. Alkylative epoxide rearrangement. A stereospecific approach to chiral epoxide pheromones. J. Org. Chem. 58:5153–5162.Google Scholar
  5. CardÉ, R. T., Doane, C. C., and Farnum, D. G. 1978. Attractancy of male Gypsy moths of (+)-disparlures synthesized by different procedures. Environ. Entomol. 7:815–816.Google Scholar
  6. Ebata, T. and Mori, K. 1989. Synthesis of both enantiomers of (Z)-cis-9,10-epoxy-6-heneicosene. Agric. Biol. Chem. 53:801–804.Google Scholar
  7. Gries, G., Gries, R., Khaskin, G., Slessor, K. N., Grant, G. G., Liska, J., and Kapitola, P. 1996. Specificity of Nun and Gypsy moths sexual communication through multiple-component pheromone blends. Naturwissenschaften 83:382–385.Google Scholar
  8. Gries, R., Holden, D., Gries, G., Wimalaratne, P. D. C., Slessor, K. N., and Saunders, C. 1997. 3Z-cis-6,7-cis-9,10-Diepoxy-heneicosene: Novel class of lepidopteran pheromone. Naturwissenschaften 84:219–221.Google Scholar
  9. Hanson, R. M. and Sharpless, K. B. 1986. Procedure for the catalytic asymmetric epoxidation of allylic alcohols in the presence of molecular sieves. J. Org. Chem. 51:1922–1925.Google Scholar
  10. Hill, J. G., Rossiter, B. E., and Sharpless, K. B. 1983. Anhydrous tert-butyl hydroperoxide in toluene: The preferred reagent for applications requiring dry TBHPI. J. Org. Chem. 48:3607–3608.Google Scholar
  11. Kartha, K. P. R. 1986. Iodine, a novel catalyst in carbohydrate reactions I. O-isopropylidenation of carbohydrates. Tetrahedron Lett. 27:3415–3416.Google Scholar
  12. Katsuki, T. and Sharpless, K. B. 1980. The first practical method for asymmetric epoxidation. J. Am. Chem. Soc. 102:5974–5976.Google Scholar
  13. Mayer, M. S. and Mclaughlin, J. R. 1991. Handbook of Insect Pheromones and Sex Attractants. CRC Press, Inc., Boca Raton, FL.Google Scholar
  14. Millar, J. G. 2000. Polyene hydrocarbons and epoxides: A second major class of lepidopteran sex attractant pheromones. Annu. Rev. Entomol. 45:575–604.PubMedGoogle Scholar
  15. Millar, J. G., Giblin, M., Barton, D., Morrison, A., and Underhill, E. W. 1990. Synthesis and field testing of enantiomers of 6Z, 9Z-cis-3,4-epoxydienes as sex attractants for geometrid moths. Interactions of enantiomers and regioisomers. J. Chem. Ecol. 16:2317–2339.Google Scholar
  16. Muto, S. and Mori, K. 2003. Synthesis of all four stereoisomers of leucomalure, components of the female sex pheromone of the Satin moth, Leucoma salicis. Eur. J. Org. Chem. 1300–1307.Google Scholar
  17. Plimmer, J. R., Schwalbe, C. P., Paszek, E. C., Bierl, B. A., Webb, R. E., Marumo, S., and Iwaki, S. 1977. Contrasting effectiveness of (+) and (−) enantiomers of disparlure for trapping native populations of Gypsy moth in Massachusetts. Environ. Entomol. 6:518–522.Google Scholar
  18. Posner, G. H., Whitten, C. E., and Sterling, J. J. 1973. A new class of mixed cuprate(1) reagents, HetRCuLi, which allow selective alkyl group transfer. J. Am. Chem. Soc. 95:7788–7800.Google Scholar
  19. Pougny, J.-R. and Rollin, P. 1987. Synthesis from D-xylose of the salt marsh caterpillar moth pheromone (3Z,6Z,9S,10R)-epoxyheneicosadiene and its (3Z,6E)-stereoisomer. Tetrahedron Lett. 28:2977–2978.Google Scholar
  20. Razkin Lizarraga, J. and Mori, K. 2001. Synthesis of (+/−)-leucomalure [(3Z,6R *,7S *,9R *,10S *)-cis-6, 7-cis-9,10-diepoxy-3-henicosene], the major components of the female sex pheromone of the satin moth. Nat. Prod. Lett. 15:89–92.PubMedGoogle Scholar
  21. Rollin, P. and Pougny, J.-R. 1986. Synthesis of (6Z)-cis-9S,10R-epoxyheneicosene, a component of the ruby tiger moth pheromone. Tetrahedron 42:3479–3490.Google Scholar
  22. Rossiter, B. E., Katsuki, T., and Sharpless, K. B. 1981. Asymmetric epoxidation provides shortest routes to four chiral epoxy alcohols which are key intermediates in synthesis of methymycin, erythromycin, leucotriene C-1, and disparlure. J. Am. Chem. Soc. 103:464–465.Google Scholar
  23. Wakamura, S., Arakaki, N., Yamazawa, H., Nakajima, N., Yamamoto, M., and Ando, T. 2002. Identification of epoxyhenicosadiene and novel diepoxy derivatives as sex pheromone components of the clear-winged tussock moth Perina nuda. J. Chem. Ecol. 28:449–467.PubMedGoogle Scholar
  24. Wimalaratne, P. D. C. 1998. Identification and Synthesis of Moth pheromones. PhD Dissertation. Simon Fraser University, Burnaby, BC.Google Scholar
  25. Wolfrom, M. L., Newlin, M. R., and Stahly, E. E. 1931. Aldehydo-D-xylose tetraacetate and the mercaptals of xylose and maltose. J. Am. Chem. Soc. 53:4379–4383.Google Scholar
  26. Wong, M. Y. H. and Gray, G. R. 1978. 2-Deoxypentoses, stereoselective reduction of ketene dithioacetals. J. Am. Chem. Soc. 100:3548–3553.Google Scholar
  27. Yamaguchi, M. and Hirao, I. 1983. An efficient method for the alkynylation of oxiranes using alkynyl boranes. Tetrahedron Lett. 24:391–394.Google Scholar
  28. Yamamoto, M., Yamazawa, H., Nakajima, N., and Ando, T. 1999. A convenient preparation of optically active diepoxyhenicosene (leucomalure), lymantrid sex pheromone, by chiral HPLC. Eur. J. Org. Chem. 1503–1506.Google Scholar
  29. Yamazawa, H., Nakajima, N., Wakamura, S., Arakaki, N., Yamamoto, M. and Ando, T. 2001. Synthesis and characterization of diepoxyalkenes derived from (3Z,6Z,9Z)-trienes: Lymantrid sex pheromones and their candidates. J. Chem. Ecol. 27:2153–2167.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Priyantha D. C. Wimalaratne
    • 1
  • Keith N. Slessor
    • 2
  1. 1.Department of ChemistryUniversity of KelaniyaKelaniyaSri Lanka
  2. 2.Department of ChemistrySimon Fraser UniversityBurnabyCanada

Personalised recommendations