Journal of Chemical Ecology

, Volume 30, Issue 6, pp 1203–1212 | Cite as

Lignification and Related Enzymes in Glycine max Root Growth-Inhibition by Ferulic Acid

  • Wanderley Dantas dos Santos
  • Maria de Lourdes L. Ferrarese
  • Aline Finger
  • Aline C. N. Teixeira
  • Osvaldo Ferrarese-Filho


Changes in soluble and cell wall bound peroxidase (POD, EC activity, phenylalanine ammonia-lyase (PAL, EC activity, and lignin content in roots of ferulic acid-stressed soybean (Glycine max (L.) Merr.) seedlings and their relationships with root growth were investigated. Three-day-old soybean seedlings were cultivated in half-strength Hoagland nutrient solution containing 1.0 mM ferulic acid for 24–72 hr. Length, fresh weight, and dry weight of roots decreased, while soluble and cell wall bound POD activity, PAL activity, and lignin content increased after ferulic acid treatment. These enzymes probably participate in root growth reduction in association with cell wall stiffening related to the formation of cross-linking among cell wall polymers and lignin production.

Allelopathy ferulic acid lignin peroxidase phenylalanine ammonia-lyase root growth soybean 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baleroni, C. R. S., Ferrarese, M. L. L., Braccini, A. L., Scapim, C. A., and Ferrarese-Filho, O. 2000. Effects of ferulic and p-coumaric acids on canola (Brassica napus L. cv. Hyola 401) seed germination. Seed Sci. Technol. 28:201–207.Google Scholar
  2. Baziramakenga, R., Leroux, G. D., and Simard, R. R. 1995. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. J. Chem. Ecol. 21:1271–1285.Google Scholar
  3. Bergmark, C. L., Jackson, W. A., Volk, R. J., and Blum, U. 1992. Differential inhibition by ferulic acid of nitrate and ammonium uptake in Zea mays L. Plant Physiol. 98:639–645.Google Scholar
  4. Blum, U. and Rebbeck, J. 1989. Inhibition and recovery of cucumber roots given multiple treatments of ferulic acid in nutrient culture. J. Chem. Ecol. 15:917–928.Google Scholar
  5. Bolwell, G. P. and Wojtaszek, P. 1997. Mechanisms for the generation of reactive oxygen species in plant defense-a broad perspective. Physiol. Mol. Plant Pathol. 51:347–366.Google Scholar
  6. Booker, F. L., Blum, U., and Fiscus, E. L. 1992. Short-term effects of ferulic acid on ion uptake and water relations in cucumber seedlings. J. Exp. Bot. 43:649–655.Google Scholar
  7. Cakmak, I. and Horst, W. J. 1991. Effect of aluminum on lipid peroxidation, superoxide-dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Plant Physiol. 83:463–468.Google Scholar
  8. Chen, S. and Schopfer, P. 1999. Hydroxyl-radical production in physiological reactions. A novel function of peroxidase. Eur. J. Biochem. 260:726–735.PubMedGoogle Scholar
  9. Demos, E. K., Woolwine, M., Wilson, R. H., and McMillan, C. 1975. The effects of ten phenolic compounds on hypocotyl growth and mitochondrial metabolism of mung bean. Am. J. Bot. 62:97–102.Google Scholar
  10. Devi, R. S. and Prasad, M. N. V. 1996. Ferulic acid mediated changes in oxidative enzymes of maize seedlings: Implications in growth. Biol. Plant. 38:387–395.Google Scholar
  11. Doblinski, P. M. F., Ferrarese, M. L. L., Huber, D. A., Scapim, C. A., Braccini, A. L., and Ferrarese-Filho, O. 2003. Peroxidase and lipid peroxidation of soybean roots in response to p-coumaric and p-hydroxybenzoic acids. Braz. Arch. Biol. Technol. 46:193–198.Google Scholar
  12. Einhellig, F. A. 1995. Allelopathy: Current status and future goals, pp. 1–24, in Inderjit, K. M. M. Dakshini, and F. A. Einhellig (eds.). Allelopathy: Organisms, Processes and Applications. ACS Symposium Series 582, American Chemical Society, Washington, DC.Google Scholar
  13. Einhellig, F. A. and Eckrich, P. C. 1984. Interactions of temperature and ferulic acid stress on grain sorghum and soybeans. J. Chem. Ecol. 10:161–170.Google Scholar
  14. Ferrarese, M. L. L., Ferrarese-Filho, O., and Rodrigues, J. D. 2000a. Ferulic acid uptake by soybean root in nutrient culture. Acta Physiol. Plant. 22:121–124.Google Scholar
  15. Ferrarese, M. L. L., Rodrigues, J. D., and Ferrarese-Filho, O. 2000b. Phenylalanine ammonia-lyase activity in soybean roots extract measured by reversed-phase high performance liquid chromatography. Plant Biol. 2:152–153.Google Scholar
  16. Ferrarese, M. L. L., Souza, N. E., Rodrigues, J. D., and Ferrarese-Filho, O. 2001. Carbohydrate and lipid status in soybean roots influenced by ferulic acid uptake. Acta Physiol. Plant. 23:421–427.Google Scholar
  17. Ferrarese, M. L. L., Zottis, A., and Ferrarese-Filho, O. 2002. Protein-free lignin quantification in soybean (Glycine max) roots. Biologia 57:541–543.Google Scholar
  18. Frahry, G. F. and Schopfer, P. 1998. Hydrogen peroxide production by roots and its stimulation by exogenous NADH. Plant Physiol. 103:395–404.Google Scholar
  19. Fry, S. C. 1986. Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu. Rev. Plant Physiol. 37:165–186.Google Scholar
  20. Herrig, V., Ferrarese, M. L. L., Suzuki, L. S., Rodrigues, J. D., and Ferrarese-Filho, O. 2002. Peroxidase and phenylalanine ammonia-lyase activities, phenolic acid contents, and allelochemicals-inhibited root growth of soybean. Biol. Res. 35:59–66.PubMedGoogle Scholar
  21. Holappa, L. D. and Blum, U. 1991. Effects of exogenously applied ferulic acid, a potential allelopathic compound, on leaf growth, water utilization, and endogenous abscisic acid levels of tomato, cucumber, and bean. J. Chem. Ecol. 17:865–886.Google Scholar
  22. Iiyama, K., Lam, T. B. T., and Stone, B. A. 1990. Phenolic acid bridges between polysaccharides and lignin in wheat internodes. Phytochemistry 29:733–737.Google Scholar
  23. Kobza, J. and Einhellig, F. A. 1987. The effects of ferulic acid on the mineral nutrition of grain sorghum. Plant Soil 98:99–109.Google Scholar
  24. Kuiters, A. T. 1990. Role of phenolic substances from decomposing forest litter in plant-soil interactions. Acta Bot. Neerl. 39:329–348.Google Scholar
  25. Lyu, S.-W. and Blum, U. 1990. Effects of ferulic acid, an allelopathic compound, on net P, K, and water uptake by cucumber seedlings in a split-root system. J. Chem. Ecol. 16:2429–2439.Google Scholar
  26. Macias, F. A. 1995. Allelopathy in the Search for natural herbicide models, pp. 311–329, in Inderjit, K. M. M. Dakshini, and F. A. Einhellig (eds.). Allelopathy: Organisms, Processes and Applications. ACS Symposium Series 582, American Chemical Society, Washington, DC.Google Scholar
  27. Ng, P. L. L., Ferrarese, M. L. L., Huber, D. A., Ravagnani, A. L. S., and Ferrarese-Filho, O. 2003. Canola (Brassica napus L.) seed germination influenced by cinnamic and benzoic acids derivatives: Effects on peroxidase. Seed Sci. Technol. 31:39–46Google Scholar
  28. Patterson, D. T. 1981. Effects of allelopathic chemicals on growth and physiological responses of soybean (Glycine max L.). Weed Sci. 29:53–59.Google Scholar
  29. Politycka, B. 1996. Peroxidase activity and lipid peroxidation in roots of cucumber seedlings influenced by derivatives of cinnamic and benzoic acids. Acta Physiol. Plant. 18:365–370.Google Scholar
  30. Politycka, B. 1998. Phenolics and the activities of phenylalanine ammonia-lyase, phenol-β-glucosyltransferase and β-glucosidase in cucumber roots as affected by phenolic allelochemicals. Acta Physiol. Plant. 20:405–410.Google Scholar
  31. Politycka, B. 1999. Ethylene-dependent activity of phenylalanine ammonia-lyase and lignin formation in cucumber roots exposed to phenolic allelochemicals. Acta Soc. Bot. Pol. 68:123–127.Google Scholar
  32. Pramanik, M. H. R., Nagai, M., Asao, T., and Matsui, Y. 2000. Effects of temperature and photoperiod on phytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic culture. J. Chem. Ecol. 26:1953–1967.Google Scholar
  33. Ros-BarcelÓ, A., Pomar, F., LÓpez-Serrano, M., MartÍnez, P., and PedreÑo, M. A. 2002. Developmental regulation of the H2O2-producing system and of a basic peroxidase isoenzyme in the Zinnia elegans lignifying xylem. Plant Physiol. Biochem. 40:325–332.Google Scholar
  34. SÁnchez, M., PeÑa, M. J., Revilla, G., and Zarra, I. 1996. Changes in dehydrodiferulic acids and peroxidase activity against ferulic acid associated with cell walls during growth of Pinus pinaster hypocotyl. Plant Physiol. 111:941–946.PubMedGoogle Scholar
  35. Sato, T., Kiuchi, F., and Sankawa, U. 1982. Inhibition of phenylalanine ammonia-lyase by cinnamic and derivatives and related compounds. Phytochemistry 21:845–850.Google Scholar
  36. Shann, J. R. and Blum, U. 1987. The utilization of exogenously supplied ferulic acid in lignin biosynthesis. Phytochemistry 26:2977–2981.Google Scholar
  37. Siqueira, J. O., Nair, M. G., Hammerschmidt, R., and Safir, G. R. 1991. Significance of phenolic compounds in plant-soil-microbial systems. Crit. Rev. Plant Sci. 10:63–121.Google Scholar
  38. Tan, K. S., Hoson, T., Masuda, Y., and Kamikasa, S. 1992. Effect of ferulic and p-coumaric acids on Oryza coleoptile growth and the mechanical properties of cell walls. J. Plant Physiol. 140:460–465.Google Scholar
  39. Vaughan, D. and Ord, B. 1990. Influence of phenolic acids on morphological changes in roots of Pisum sativum. J. Sci. Food Agric. 52:289–299.Google Scholar
  40. Whetten, R. W., MacKaw, J. J., and Sederoff, R. R. 1998. Recent advances in understanding lignin biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:585–609.PubMedGoogle Scholar
  41. Wojtaszek, P. 1997. Oxidative burst: An early plant response to pathogen infection. Biochem. J. 322:681–692.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Wanderley Dantas dos Santos
    • 1
  • Maria de Lourdes L. Ferrarese
    • 1
  • Aline Finger
    • 1
  • Aline C. N. Teixeira
    • 1
  • Osvaldo Ferrarese-Filho
    • 1
  1. 1.Departamento de BioquímicaUniversidade Estadual de MaringáMaringáBrazil

Personalised recommendations