Advertisement

Journal of Chemical Ecology

, Volume 30, Issue 6, pp 1183–1201 | Cite as

Pseudopterosin Content Variability of the Purple Sea Whip Pseudopterogorgia elisabethae at the Islands of San Andres and Providencia (Sw Caribbean)

  • Monica Puyana
  • Ginna Narvaez
  • Alejandro Paz
  • Oscar Osorno
  • Carmenza Duque
Article

Abstract

To determine pseudopterosin composition and concentration in colonies of Pseudopterogorgia elisabethae from the islands of San Andres and Providencia, we collected fragments of individual colonies at various sites and depth ranges around the islands. Chromatographic profiles of the polar fraction, particularly those obtained by HPLC-MS analyses, allowed us to recognize two different chemotypes. Chemotype 1 characterized samples from Providencia whereas chemotype 2 characterized samples from San Andres. A complex pseudopterosin mixture (compounds 113) characterized chemotype 1. These compounds were isolated by a combination of chromatographic methods and identified by spectroscopic methods (MS, UV, 1H, and 13C NMR). We identified the known pseudopterosins G and K and seco-pseudopterosin A. We also isolated and identified seven new compounds, pseudopterosins P-V, isomers of known pseudopterosins. Pseudopterosins G and K were found at concentrations ranging between 1 and 3% of the animal dry mass. Pseudopterosins Q and U were the major compounds reaching up to 6% of the animal dry mass at some locations. Major metabolites in chemotype 2 had a molecular weight and fragmentation pattern different from that observed in the pseudopterosins, as determined by HPLC-MS. Total pseudopterosin concentration in this chemotype was below 3% dry mass at all sites. Total pseudopterosin concentration was significantly higher in chemotype 1, with concentrations ranging between 4 and 20% dry mass. At most locations on Providencia, however, total pseudopterosin concentration ranged between 11 and 15% dry mass. Concentrations exceed reports from other locations in the Caribbean. Furthermore, pseudopterosin composition in our samples is quite different from those in specimens of P. elisabethae from the Bahamas and Bermuda. Pseudopterosins G, K, and P-V are characteristic of P. elisabethae colonies from the island of Providencia, while pseudopterosins A-D are characteristic of colonies of P. elisabethae from the Bahamas islands, and pseudopterosins E-L have been isolated from P. elisabethae from the Bahamas and Bermuda. The overall morphology of P. elisabethae can be variable, and chemical differences are not correlated to specific morphs. We confirmed the species identity of each colony by morphological and sclerite analysis and found no significant differences in sclerite dimensions among different colonies and chemotypes.

Pseudopterogorgia elisabethae pseudopterosins chemical variability diterpenes anti-inflammatory activity Gorgonian Octocorallia San Andres and Providencia islands Colombian Caribbean 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Bayer, F. M. 1961. The Shallow-Water Octocorallia of the West Indian Region. Martinus Nijhoff, The Hague, 373 p.Google Scholar
  2. Coll, J. C., Bowden, B. F., Heaton, A., Scheuer, P. J., Li, M. K. W., Clardy, J., Schulte, G. K., and Finer-Moore, J. 1989. Structures and possible functions of epoxypukalide and pukalide. Diterpenes associated with eggs of sinularian soft corals (Cnidaria, Anthozoa, Octocorallia, Alcyonacea, Alcyoniidae). J. Chem. Ecol. 15:1177–1191.Google Scholar
  3. Coll, J. C., Leone, P. A., Bowden, B. F., Carroll, A. R., KÖnig, G. M., Heaton, A., De Nys, R., Maida, M., AliÑo, P. M., Willis, R. H., Babcock, R. C., Florian, Z., Clayton, M. N., Miller, R. L., and Alderslade, P. N. 1995. Chemical aspects of mass spawning in corals: II. (—)-epi-thunbergol, the sperm-attractant in the eggs of the soft coral Lobophytum crassum (Cnidaria: Octocorallia). Mar. Biol. 123:137–143.Google Scholar
  4. De Nys, R., Coll, J. C., and Price, I. R. 1991. Chemically mediated interactions between the red alga Plocamium hamatum (Rhodophyta) and the octocoral Sinularia cruciata (Alcyonacea). Mar. Biol. 108:315–320.Google Scholar
  5. Diaz, J. M., Barrios, L. M., Cendales, M. H., GarzÓn-Ferreira, J., Geister, J., LÓpez, M., Ospina, G. H., Parra, F., PinzÓn, J., Vargas, B., Zapata, F., and Zea, S. 2000. Areas coralinas de Colombia. Invemar. Santa Marta Esp., 5, Colombia, 176 p.Google Scholar
  6. Diaz, J. M., GarzÓn-Ferreira, J., and Zea, S. 1995. Los Arrecifes coralinos de la isla de San Andrés, Colombia: estado actual and perspectivas para su conservación. Rev. Acad. Colomb. Cienc., Col. Jorge Alvarez LLeras 7, Bogotá, 150 p.Google Scholar
  7. Fenical, W. 1987. Marine soft corals of the genus Pseudopterogorgia: A resource for novel anti-inflammatory diterpenoids. J. Nat. Prod. 50:1001–1008.PubMedGoogle Scholar
  8. Harvell, C. D., Fenical, W., Roussis, V., Ruesink, J. L., Griggs, C. C., and Greene, C. H. 1993. Local and geographical variation in the defensive chemistry of a West Indian gorgonian coral (Briareum asbestinum). Mar. Ecol. Prog. Ser. 93:165–173.Google Scholar
  9. Leone, P. A., Bowden, B. F., Carroll, A. R., and Coll, J. C. 1995. Chemical consequences of relocation of the soft coral Lobophytum compactum and its placement in contact with the red alga Plocamium hamatum. Mar. Biol. 122:675–679.Google Scholar
  10. Look, S. A. and Fenical, W. 1987. The seco-pseudopterosins, new anti-inflammatory diterpene glycosides from a Caribbean octocoral of the genus Pseudopterogorgia. Tetrahedron 43:3363–3370.Google Scholar
  11. Look, S. A., Fenical, W., Jacobs, R. S., and Clardy, J. 1986a. The pseudopterosins: Antiinflammatory and analgesic natural products from the sea whip Pseudopterogorgia elisabethae. Proc. Natl. Acad. Sci. U.S.A. 83:6238–6240.PubMedGoogle Scholar
  12. Look, S. A., Fenical, W., Matsumoto, G. K., and Clardy, J. 1986b. The Pseudopterosins: A new class of antiinflammatory and analgesic diterpene pentosides from the marine sea whip Pseudopterogorgia elisabethae (Octocorallia). J. Org. Chem. 51:5140–5145.Google Scholar
  13. Maida, M., Carroll, A. R., and Coll, J. C. 1993. Variability of terpene content in the soft coral Sinularia flexibilis (Coelenterata: Octocorallia), and its ecological implications. J. Chem. Ecol. 19:2285–2296.Google Scholar
  14. Maida, M., Sammarco, P. W., and Coll, J. C. 1995. Effects of soft corals on scleractinian coral recruitment: I. Directional allelopathy and inhibition of settlement. Mar. Ecol. Prog. Ser. 121:191–202.Google Scholar
  15. Mayer, A. M. S., Jacobson, P. B., Fenical, W., Jacobs, R. S., and Glaser, K. B. 1998. Pharmacological characterization of the Pseudopterosins: Novel antiinflammatory natural products isolated from the Caribbean soft coral, Pseudopterogorgia elisabethae. Life Sci. 62:PL401–PL407.PubMedGoogle Scholar
  16. Pawlik, J. R., Burch, M. T., and Fenical, W. 1987. Patterns of chemical defense among Caribbean gorgonian corals: A preliminary survey. J. Exp. Mar. Biol. Ecol. 108:55–66.Google Scholar
  17. Puglisi, M. P., Paul, V. J., and Slattery, M. 2000. Biogeographic comparisons of chemical and structural defenses of the Pacific gorgonians Annella mollis and A. reticulata. Mar. Ecol. Prog. Ser. 207:263–272.Google Scholar
  18. Rodriguez, A. D. 1995. The natural products chemistry of West Indian Gorgonian octocorals. Tetrahedron 51:4571–4618.Google Scholar
  19. Rodriguez, A. D., Gonzalez, E., and Huang, S. D. 1998. Unusual terpenes with novel carbon skeletons from the West Indian Sea Whip Pseudopterogorgia elisabethae (Octocorallia). J. Org. Chem. 63:7083–7091.PubMedGoogle Scholar
  20. Rodriguez, A. D., Ramirez, C., and Rodriguez, I. I. 1999. Sandresolides A and B: Novel norditerpenes from the sea whip Pseudopterogorgia elisabethae (Bayer). Tetrahedron Lett. 7627–7631.Google Scholar
  21. Rodriguez, A. D., RamÍrez, C., RodrÍguez, I. I., and Barnes, C. L. 2000a. Novel terpenoids from the West Indian Sea Whip Pseudopterogorgia elisabethae (Bayer). Elisapterosins A and B: Rearranged diterpenes possessing an unprecedented cagelike framework. J. Org. Chem. 65:1390–1398.PubMedGoogle Scholar
  22. Rodriguez, A. D., Ramirez, C., and Shi, Y. P. 2000b. The Cumbiasins, structurally novel diterpenes possessing intricate carbocyclic skeletons from the West Indian sea whip Pseudopterogorgia elisabethae (Bayer). J. Org. Chem. 65:6682–6687.PubMedGoogle Scholar
  23. RodrÍguez, A. D. and RamÍrez, C. 2001. Serrutulane diterpenes with antimycobacterial activity isolated from the West Indian Sea Whip Pseudopterogorgia elisabethae. J. Nat. Prod. 64:100–102.PubMedGoogle Scholar
  24. Roussis, V., Vagias, C., Tsitsimpikou, C., and Diamantopoulou, N. 2000. Chemical variability of the volatile metabolites from the Caribbean corals of the genus Gorgonia. Z. Naturforsch. 55c:431–441.Google Scholar
  25. Roussis, V., Zhongde, W., and Fenical, W. 1990. New antiinflammatory pseudopterosins from the marine octocoral Pseudopterogorgia elisabethae. J. Org. Chem. 55:4916–4922.Google Scholar
  26. Rowan, R. 1988. Diversity and ecology of zooxanthellae on coral reefs. J. Phycol. 34:407–417.Google Scholar
  27. Rowan, R. and Knowlton, N. 1995. Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc. Nat. Acad. Sci. U.S.A. 92:2850–2853.Google Scholar
  28. Sammarco, P. W. and Coll, J. C. 1988. The Chemical Ecology of Alcyonarian corals. Coelenterata: Octocorallia, pp. 89–115, in P. Scheuer (ed.). Bioorganic Marine Chemistry. Vol. 2. Springer-Verlag, Berlin.Google Scholar
  29. Sanchez, J. A., DÍaz, J. M., and Zea, S. 1998. Octocoral and black coral distribution patterns on the barrier reef-complex of Providencia island, Southwestern Caribbean.Caribb. J. Sci. 34:250–264.Google Scholar
  30. Thornton, R. and Kerr, R. 2002. Induction of pseudopterosin biosynthesis in the gorgonian Pseudopterogorgia elisabethae. J. Chem. Ecol. 28:2083–2089.PubMedGoogle Scholar
  31. Toller, W. W., Rowan, R., and Knowlton, N. 2001. Zooxanthellae of the Montastrea annularis species complex: Patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biol. Bull. 201:348–359.PubMedGoogle Scholar
  32. Zea, S., Geister, J., GarzÓn-Ferreira, J., and DÍaz, J. M. 1998. Biotic changes in the reef complex of San Andrés Island (Southwestern Caribbean Sea, Colombia) occurring over nearly three decades. Atoll Res. Bull. 456:30.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Monica Puyana
    • 1
  • Ginna Narvaez
    • 1
  • Alejandro Paz
    • 1
  • Oscar Osorno
    • 1
  • Carmenza Duque
    • 1
  1. 1.Departamento de QuímicaUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations