Journal of Chemical Ecology

, Volume 30, Issue 6, pp 1103–1116 | Cite as

The Role of Semiochemicals in the Avoidance of the Seven-Spot Ladybird, Coccinella septempunctata, by the Aphid Parasitoid, Aphidius ervi

  • Yoshitaka Nakashima
  • Michael A. Birkett
  • Barry J. Pye
  • John A. Pickett
  • Wilf Powell


The role of semiochemicals in mediating intraguild interactions between the seven-spot ladybird, Coccinella septempunctata, and the aphid parasitoid, Aphidius ervi, was investigated. Female parasitoids avoided leaves visited by C. septempunctata adults and larvae during the previous 24 hr. Ethanol extracts of C. septempunctata adults and larvae also induced avoidance responses by A. ervi. Two of the hydrocarbons identified by gas chromatography (GC) and coupled GC-mass spectrometry (GC-MS), n-tricosane (C23H48), and n-pentacosane (C25H52), when tested individually at levels found in the adult extract, induced avoidance by A. ervi. Further investigation of the larvae extract, and footprint chemicals deposited by adults in glass Petri dishes, confirmed the presence of the hydrocarbons. Parasitism rates of the pea aphid, Acyrthosiphon pisum, on broad bean plants, Vicia faba, which had been sprayed with a mixture of the chemicals, were lower than those on control plants. The effect, however, was no longer evident if parasitoid foraging was delayed by 24 hr after the plants were treated. The ecological significance of intraguild avoidance behavior and implications for possible use of the semiochemicals involved in future biological control programs are discussed.

Intraguild predation predator avoidance trail oviposition decision biological control n-tricosane n-pentacosane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwala, B. K., Yasuda, H., and Kajita, Y. 2003. Effect of conspecifics and heterospecific feces on foraging and oviposition of two predatory ladybirds: Role of fecal cues in predator avoidance. J. Chem. Ecol. 29:357–376.PubMedGoogle Scholar
  2. Al Abassi, S., Birkett, M. A., Pettersson, J., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 2001. Response of the ladybird parasitoid Dinocampus coccinellae to toxic alkaloids from the seven-spot ladybird, Coccinella septempunctata. J. Chem. Ecol. 27:33–43.PubMedGoogle Scholar
  3. Al Abassi, S., Birkett, M. A., Pettersson, J., Pickett, J. A., and Woodcock, C. M. 1998. Ladybird beetle odour identified and found to be responsible for attraction between adults. Cell. Mol. Life Sci. 54:876–879.Google Scholar
  4. Colfer, R. G. and Rosenheim, J. A. 1995. Intraguild predation by coccinellid beetles on an aphid parasitoid, Lysiphlebus testaceipes, pp. 1033–1036, in Cotton Insect Research and Control, Procceedings 1995 Beltwide Cotton Conference.Google Scholar
  5. Dixon, A. F. G. 2000. Insect Predator-Prey Dynamics: Ladybird Beetles & Biological Control. Cambridge University Press, Cambridge, UK.Google Scholar
  6. Ekbom, B. 1994. Arthropod predators of the pea aphid, Acyrthosiphon pisum Harr. (Hom., Aphididae) in peas (Pisum sativum L.), clover (Trifolium pratense L.) and alfalfa (Medicago sativa L.). J. Appl. Entomol. 117:469–476.Google Scholar
  7. Ferguson, K. I. and Stiling, P. 1996. Non-additive effects of multiple natural enemies on aphid populations. Oecologia 108:375–379.Google Scholar
  8. Hemptinne, J. L., Lognay, G., Doumbia, M., and Dixon, A. F. G. 2001. Chemical nature and persistence of the oviposition deterring pheromone in the tracks of the two spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae). Chemoecology 11:43–47.Google Scholar
  9. Hoelmer, K. A., Osborne, L. S., and Yokomi, R. K. 1994. Interactions of the whitefly predator Delphastus pusillus (Coleoptera:Coccinellidae) and parasitized sweetpotato whitefly (Homoptera:Aleyrodidae). Environ. Entomol. 23:136–139.Google Scholar
  10. Kosaki, A. and Yamaoka, R. 1996. Chemical composition of footprints and cuticular lipids of three species of lady beetles. Jpn. J. Appl. Entomol. Zool. 40:47–53.Google Scholar
  11. Nakashima, Y. and Senoo, N. 2003. Avoidance of ladybird trails by an aphid parasitoid Aphidius ervi: Active period and effects of prior oviposition experience. Entomol. Exp. Appl. 109:163–166.Google Scholar
  12. NIST. 1990. Standard Reference Data Base (Version 3.0.1). Office of the Standard Reference Data Base, National Institute of Standards and Technology, Gaithersburg, MD.Google Scholar
  13. Pallini, A., Janssen, A., and Sabelis, M. W. 1998. Predators induce interspecific herbivore competition for food in refuge space. Ecol. Lett. 1:171–177.Google Scholar
  14. Pickett, J. A. 1990. Gas chromatography-mass spectrometry in insect pheromone identification: Three extreme cases, pp. 209–309, in A. R. McCaffery and I. D. Wilson (eds.). Chromatography and Isolation of Insect Hormones and Pheromones. Plenum Press, New York.Google Scholar
  15. Pickett, J. A. and Griffiths, D. C. 1980. Composition of aphid alarm pheromones. J. Chem. Ecol. 6:349–360.Google Scholar
  16. Raymond, B., Darby, A. C., and Douglas, A. E. 2000. Intraguild predators and the spatial distribution of a parasitoid. Oecologia 124:367–372.Google Scholar
  17. Rosenheim, J. A., Wilholt, L. R., and Armer, C. A. 1993. Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia 96:439–449.Google Scholar
  18. Rosenheim, J. A. 1998. Higher-order predators and the regulation of insect herbivore populations. Annu. Rev. Entomol. 43:421–447.PubMedGoogle Scholar
  19. Ruzicka, Z. 1998. Further evidence of oviposition-deterring allomone in chrysopids (Neuroptera: Chrysopidae). Eur. J. Entomol. 95:35–39.Google Scholar
  20. Ruzicka, Z. 2001. Oviposition responses of aphidophagous coccinellids to tracks of ladybird (Coleoptera: Coccinellidae) and lacewing (Neuroptera: Chrysopidae) larvae. Eur. J. Entomol. 98:183–188.Google Scholar
  21. Schellhorn, N. A. and Andow, D. A. 1999. Cannibalism and interspecific predation: Role of oviposition behavior. Ecol. Appl. 9:418–428.Google Scholar
  22. Senoo, N., Ochai, Y., and Nakashima, Y. 2002. Seasonal abundance of primary parasitoids and hyperparasitoids associated with Acyrthosiphon pisum (Harris) and Acyrthosiphon kondoi Shinji (Homoptera: Aphididae) on Alfalfa. Jpn. J. Appl. Entomol. Zool. 46:96–98.Google Scholar
  23. Synder, W. E. and Ives, A. R. 2001. Generalist predators disrupt biological control by a specialist parasitoid. Ecology 82:705–716.Google Scholar
  24. Takahashi, K. 1996. Studies on Coccinell a septempunctata Brucki Mulsant as a biological agent for controlling Alfalfa aphids. Bull. Natl. Grassl. Res. Inst. 54:17–77.Google Scholar
  25. Taylor, A. J., Muller, C. B., and Godfray, H. C. J. 1998. Effect of aphid predators on oviposition behavior of aphid parasitoids. J. Insect Behav. 11:297–302.Google Scholar
  26. Van Der Werf, W., Evans, E. W., and Powell, J. 2000. Measuring and modeling the dispersal of Coccinella septempunctata (Coleoptera: Coccinellidae) in alfalfa fields. Eur. J. Entomol. 97:487–493.Google Scholar
  27. Wells, M. L., McPherson, R. M., and Ruberson, J. R. 2001. Predation of parasitized and unparasitized cotton aphids (Homoptera: Aphididae) by larvae of two coccinellids. J. Entomol. Sci. 36:93–96.Google Scholar
  28. Wheeler, A. G. 1974. Studies on the arthropod fauna of alfalfa. Plant bugs (Miridae). Can. Entomol. 106:1264–1275.Google Scholar
  29. Wheeler, A. G. 1977. Studies on the arthropod fauna of alfalfa. Predaceus insects. Can. Entomol. 109:423–427.Google Scholar
  30. Wheeler, A. G., Hayes, J. T., and Stephens, J. L. 1968. Insect predators of mummified pea aphids. Can. Entomol. 100:221–222.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Yoshitaka Nakashima
    • 1
    • 2
  • Michael A. Birkett
    • 2
  • Barry J. Pye
    • 2
  • John A. Pickett
    • 2
  • Wilf Powell
    • 2
  1. 1.Laboratory of EntomologyObihiro University of Agriculture and Veterinary MedicineObihiroJapan
  2. 2.Harpenden, Herts.UK

Personalised recommendations