Advertisement

Journal of Chemical Ecology

, Volume 30, Issue 6, pp 1087–1101 | Cite as

Inhibition of Mouth Skeletal Muscle Relaxation by Flavonoids of Cistus ladanifer L.: A Plant Defense Mechanism Against Herbivores

  • T. Sosa
  • N. Chaves
  • J. C. Alias
  • J. C. Escudero
  • F. Henao
  • C. Gutiérrez-Merino
Article

Abstract

Cistus ladanifer exudate is a potent inhibitor of the sarcoplasmic reticulum Ca2+-ATPase (Ca2+-pump) of rabbit skeletal muscle, a well- established model for active transport that plays a leading role in skeletal muscle relaxation. The low concentration of exudate needed to produce 50% of the maximum inhibition of the sarcoplasmic reticulum Ca2+-ATPase activity, 40–60 μg/ml, suggests that eating only a few milligrams of C. ladanifer leaves can impair the relaxation of the mouth skeletal muscle of herbivores, as the exudate reaches up to 140 mg/g of dry leaves in summer season. The flavonoid fraction of the exudate accounts fully for the functional impairment of the sarcoplasmic reticulum produced by the exudate (up to a dose of 250–300 μg/ml). The flavonoids present in this exudate impair the skeletal muscle sarcoplasmic reticulum function at two different levels: (i) by inhibition of the Ca2+-ATPase activity, and (ii) by decreasing the steady state ATP-dependent Ca2+-accumulation. Among the exudate flavonoids, apigenin and 3,7-di-O-methyl kaempferol are the most potent inhibitors of the skeletal muscle sarcoplasmic reticulum. We conclude that the flavonoids of this exudate can elicit an avoidance reaction of the herbivores eating C. ladanifer leaves through impairment of mouth skeletal muscle relaxation.

Flavonoids Cistus ladanifer Ca2+-ATPase skeletal muscle plant defense apigenin 7-di-O-methyl kaempferol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Andersen, J. P. 1989. Monomer-oligomer equilibrium of sarcoplasmic reticulum Ca-ATPase and the role of subunit interaction in the Ca2+ pump mechanism. Biochim. Biophys. Acta 98:47–72.Google Scholar
  2. Antollini, S. S., Soto, M. A., Bonini de Romanelli, I., GutiÉrrez-Merino, C., Sotomayor, P., and Barrantes, F. J. 1996. Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer. J. Biophys. 70:1275–1284.Google Scholar
  3. Appel, H. M. 1993. Phenolics in ecological interactions: The importance of oxidation. J. Chem. Ecol. 19:1521–1552.Google Scholar
  4. Arinafril and Suwandi. 2001. Use of plant extracts as an environmentally friendly pest management methods. SEAG Symposium, Los Baños, The Philippines.Google Scholar
  5. Chaves, N. and Escudero, J. C. 1999. Variation of flavonoid synthesis induced by ecological factors, pp. 267–285, in K. Inderjit, M. N. Dakshini, and F. L. Chester (eds.). Principles and Practices in Plant Ecology. Allelochemicals Interactions. CRC Press, Boca Raton, FL.Google Scholar
  6. Chaves, N., Escudero, J. C., and Gutierrez-Merino, C. 1993. Seasonal variation of exudate of Cistus ladanifer. J. Chem. Ecol. 19:2577–2591.Google Scholar
  7. Chaves, N., Escudero, J. C., and GutiÉrrez-Merino, C. 1997. Role of ecological variables in the seasonal variation of flavonoid content of Cistus ladanifer exudate. J. Chem. Ecol. 23:579–603.Google Scholar
  8. Chaves, N., Rios, J. J., GutiÉrrez-Merino, C., Escudero, J. C., and Olias, J. M. 1998. Analysis of secreted flavonoids of Cistus ladanifer L. by high-performance liquid chromatography-particle beam mass spectrometry. J. Chromatogr. A 799:111–115.Google Scholar
  9. Chaves, N., Sosa, T., and Escudero, J. C. 2001. Plant growth inhibiting flavonoids in exudate of Cistus ladanifer L. and in associated soils. J. Chem. Ecol. 27:623–631.PubMedGoogle Scholar
  10. Coulson, C. J., King, D. J., and Wiseman, A. 1984. Chemotherapeutic and agrochemical applications of cytochrome-P450 ligands. Trends Biochem. Sci. 9:446–449.Google Scholar
  11. Cuenda, A., Henao, F., and GutiÉrrez-Merino, C. 1990. Distances between functional site of the (Ca2+ + Mg2+)-ATPase from sarcoplasmic using Ca2+ as a spectroscopic ruler. Eur. J. Biochem. 194:663–670.PubMedGoogle Scholar
  12. Cuenda, A., Henao, F., Nogues, M., and GutiÉrrez-Merino, C. 1994. Quantification and removal of glycogen phosphorylase and other enzymes associated with sarcoplasmic reticulum membrane preparations. Biochim. Biophys. Acta 1194:35–43.PubMedGoogle Scholar
  13. de Meis, L. and Vianna, A. L. 1979. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Annu. Rev. Biochem. 48:275–292.PubMedGoogle Scholar
  14. Entman, M. L. and Van Winkle, W. B. 1986. Sarcoplasmic Reticulum in Muscle Physiology. CRC Press, Boca Ratón, FL.Google Scholar
  15. Fernandez-Salguero, P., Henao, F., Laynez, J., and Gutierrez-Merino, C. 1990. Modulation of the sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase by pentobarbital. Biochim. Biophys. Acta 1022:33–40.PubMedGoogle Scholar
  16. Fleischer, S. and Inui, M. 1989. Biochemistry and biophysics of excitation-contraction coupling. Annu. Rev. Biophys. Biophys. Chem. 18:333–364.PubMedGoogle Scholar
  17. Fung, B. K. and Stryer, L. 1978. Surface density determination in membranes by fluorescence energy transfer. Biochemistry 17:5241–5248.PubMedGoogle Scholar
  18. GutiÉrrez-Merino, C., Molina, A., Escudero, B., Diez, A., and Laynez, J. 1989. Interaction of local anesthetics dibucaine and tetracaine with sarcoplasmic reticulum membranes. Differential scanning calorimetry and fluorescence studies. Biochemistry 28:3398–3406.PubMedGoogle Scholar
  19. Harborne, J. B. 1994. The Flavonoid, Advances in Research Since 1986. Chapman and Hall, London.Google Scholar
  20. Lackowicz, J. R. 1983. Principles of Fluorescence Spectroscopy. Plenum Press, New York.Google Scholar
  21. London, E. and Feigenson, G. M. 1981. Fluorescence quenching in model membranes. 2. Determination of local lipid environment of the Ca2+-ATPase from sarcoplasmic reticulum. Biochemistry 20:1939–1948.PubMedGoogle Scholar
  22. Lowry, O. H., Rosebrough, H. J., Farr, A. L., and Randall, R. L. 1951. Protein measurement with the folin-phenol reagent. J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  23. Martonosi, A. N. 1984. Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle. Physiol. Rev. 64:1240–1320.PubMedGoogle Scholar
  24. Ortiz de Montellano, P. R. 1986. Cytochrome P-450. Structure, Mechanism and Biochemistry. Plenum Press, New York.Google Scholar
  25. Rosenthal, G. A. and Berenbaum, M. R. 1991. Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  26. Ruegg, J. C. 1988. Calcium in Muscle Activation. Springer-Verlag, Berlin.Google Scholar
  27. Seigler, D. S. 1998. Plant Secondary Metabolism. Kluwer Academic, London.Google Scholar
  28. Shoshan, V. and MacLennan, D. H. 1981. Quercetin interaction with the (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 256:887–892.PubMedGoogle Scholar
  29. Wollenweber, E. and Dietz, V. H. 1981. Occurrence and distribution of free flavonoid aglycones in plants. Phytochemistry 20:869–932.Google Scholar
  30. Zamora, R., HÓdar, J. A., and GÓmez, J. M. 1999. Plant-herbivore interaction: Beyond a binary vision, pp. 677–717, in F. I. Pugnaire and F. Valladares (eds.). Handbook Functional Plant Ecolology. Marcel Dekker, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • T. Sosa
    • 1
  • N. Chaves
    • 1
  • J. C. Alias
    • 1
  • J. C. Escudero
    • 1
  • F. Henao
    • 2
  • C. Gutiérrez-Merino
    • 2
  1. 1.Area of Ecology, Faculty of ScienceUniversity of ExtremaduraBadajozSpain
  2. 2.Department of Biochemistry and Molecular Biology, Faculty of ScienceUniversity of ExtremaduraBadajozSpain

Personalised recommendations